
  

Springer Theses
Recognizing Outstanding Ph.D. Research

Baryonic Processes 
in the Large-Scale 
Structuring of the 
Universe

Jean-Baptiste Durrive



Springer Theses

Recognizing Outstanding Ph.D. Research



Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D.
theses from around the world and across the physical sciences. Nominated and
endorsed by two recognized specialists, each published volume has been selected
for its scientific excellence and the high impact of its contents for the pertinent field
of research. For greater accessibility to non-specialists, the published versions
include an extended introduction, as well as a foreword by the student’s supervisor
explaining the special relevance of the work for the field. As a whole, the series will
provide a valuable resource both for newcomers to the research fields described,
and for other scientists seeking detailed background information on special
questions. Finally, it provides an accredited documentation of the valuable
contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only
and must fulfill all of the following criteria

• They must be written in good English.
• The topic should fall within the confines of Chemistry, Physics, Earth Sciences,

Engineering and related interdisciplinary fields such as Materials, Nanoscience,
Chemical Engineering, Complex Systems and Biophysics.

• The work reported in the thesis must represent a significant scientific advance.
• If the thesis includes previously published material, permission to reproduce this

must be gained from the respective copyright holder.
• They must have been examined and passed during the 12 months prior to

nomination.
• Each thesis should include a foreword by the supervisor outlining the signifi-

cance of its content.
• The theses should have a clearly defined structure including an introduction

accessible to scientists not expert in that particular field.

More information about this series at http://www.springer.com/series/8790



Jean-Baptiste Durrive

Baryonic Processes
in the Large-Scale
Structuring of the Universe
Doctoral Thesis accepted by
the Université Paris-Sud, Paris, France

123



Author
Dr. Jean-Baptiste Durrive
Institut d’Astrophysique Spatiale
Université Paris-Sud
Orsay
France

Supervisor
Prof. Mathieu Langer
Université Paris-Sud
Orsay, Paris
France

ISSN 2190-5053 ISSN 2190-5061 (electronic)
Springer Theses
ISBN 978-3-319-61880-7 ISBN 978-3-319-61881-4 (eBook)
DOI 10.1007/978-3-319-61881-4

Library of Congress Control Number: 2017945226

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Supervisor’s Foreword

The obvious dominant trend in current cosmology is to concentrate most, if not all,
efforts on the two, unusual and preponderant ingredients of the Standard Model,
namely dark matter and dark energy. While determining their properties is indeed a
crucial challenge, it becomes increasingly clear that constraining the properties
of the dark sector is not really possible without a firm and thorough understanding
of the classical, nonlinear and complex physics of the visible and hidden, largely
subdominant baryonic gas. This physics is extremely rich, and harbours hidden
treasures of which the relevance for cosmology has so far remained chiefly
underestimated. Among those, Jean-Baptiste Durrive has delved deep into two
different, yet ultimately related aspects of the large-scale cosmic web.

On the one hand, an increasing amount of evidence indicates that cosmological
sheets, filaments and voids may be substantially magnetised. The origin of magnetic
fields in the intergalactic medium is currently uncertain. Of course, it is now well
known that non-standard extensions to the physics of the Standard Model are
capable of providing magnetogenesis mechanisms susceptible of magnetising the
Universe at large. Much less well known is the fact that standard, classical physics
of matter–radiation interactions possesses actually the same potential. Indeed, in the
first part of his thesis, Jean-Baptiste Durrive demonstrates that, in the cosmological
context of reionisation, the exchange of momentum between ionising photons and
electrons generates magnetic fields. Thanks to the distribution of both ionising
sources and neutral gas inhomogeneities, the mechanism is able to magnetise the
entire intergalactic medium to a level that may be relevant to accounting for
present-day cosmological magnetic fields.

On the second hand, the structuring of diffuse baryonic matter on the largest
scales of the cosmic web is relatively poorly known. Current observational facilities
are just reaching the necessary sensitivity to detect and study such low-density gas.
Numerical simulations still lack the dynamical range in space and time resolution
necessary for capturing small-scale physics and for simultaneously including large
enough cosmological scales. Yet knowing how ordinary matter gets structured on
those scales, before it falls into the densest regions where star formation occurs, is
crucial if we want to understand such diverse topics as cosmic star formation

v



history, the population of hydrogen clouds in galactic halos and the evolution of
magnetic fields in cosmological filaments. In that respect, Jean-Baptiste Durrive
revisits the physics and mathematics of gravitational instability in stratified struc-
tures. Adapting the tools of plasma spectral theory, he explores various equilibrium
configurations, in planar and cylindrical geometries characteristic of cosmic walls
and filaments, for isothermal and polytropic conditions, with or without an external
gravitational background. Deriving, among other things, the general wave equation
governing the growth of density perturbations, his study sheds a novel light on the
creation mechanism of giant clumps in the cosmic web and on their properties. The
relevance of his work reaches far beyond cosmology as the powerful approach he
developed allows very simply to include more physics (e.g. magnetic fields, flows,
rotation, convection) and apply it to other astrophysical contexts.

Readers from various backgrounds will find that Jean-Baptiste Durrive’s thesis,
very well structured, is remarkably well written, in a very clear and pedagogical
style. All mathematical developments are completed by illuminating physical
interpretations, and the work accomplished is of impressively high scientific level.
The mechanisms he explored are very often brought to a deep, unprecedented level
of physical understanding. At the same time, he puts his results into perspective,
highlighting the merits and limitations of the various approaches he develops.
Offering Jean-Baptiste Durrive a vis-à-vis during his three-year doctoral research
project has been immensely stimulating, and I feel very fortunate that I have been
given the chance to benefit from his infallible enthusiasm and to witness his
masterly progress.

Orsay, France
April 2017

Prof. Mathieu Langer
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Abstract

During my Ph.D., I have been focusing on two important topics of cosmology:

(i) The origin of cosmological magnetic fields: Magnetic fields seem ubiquitous
in the Universe, present at all scales and all times, probably even in the entire
intergalactic medium. Their origin is still unclear, especially on the largest
scales. The current paradigm is that they were first generated with extremely
weak strengths and later amplified during structure formation. Because of
turbulence, the fields we observe in galaxies and galaxy clusters lost their
initial characteristics. However, in less dense regions such as cosmological
filaments, sheets or voids, magnetic fields have evolved more mildly.
Therefore, intergalactic magnetic fields may still possess a memory of the
processes that generated them and hold the key to their origin. I developed, in
collaboration with Mathieu Langer (Orsay, France), analytically a detailed
physical model of a natural astrophysical mechanism that generates inter-
galactic magnetic fields during the first billion year, namely at the time when
first stars and galaxies were born. Then, in collaboration with Mathieu Langer,
Hiroyuki Tashiro (Nagoya, Japan) and Naoshi Sugiyama (Nagoya, Japan),
I computed analytically the mean energy density injected in the entire
Universe through this mechanism. Independently, in collaboration with
Dominique Aubert (Strasbourg, France), I derived the topological and statis-
tical properties of the magnetic field thus generated, using cosmological
numerical simulations. This way I demonstrated that this simple, natural
photoionization-based magnetogenesis must have created magnetic seed fields
with properties a priori perfectly compatible with present-day observations.

(ii) Gravitational fragmentation of the cosmic web: Cosmological numerical
simulations suggest that the Universe has a web-like structure, the nodes of
which are galaxy clusters. These nodes are supplied with matter flowing along
the filaments interconnecting them. Part of this accretion occurs intermittently,
which indicates that clumps of matter form not only inside clusters themselves,
but also either in cosmic voids, walls and/or filaments. I studied, in collabo-
ration with Mathieu Langer (Orsay, France), gravitational instability in
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stratified media in the frame of spectral theory, in planar and cylindrical
geometries, relevant to cosmic walls and filaments, for isothermal, polytropic,
and with and without an external gravitational background (e.g. dark matter).
I have recasted the problem as an eigenvalue problem in the force operator
formalism and derived the wave equation governing the growth of perturba-
tions. I also studied it in matrix form, which gives complementary
information.
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Chapter 1
Introduction

The dynamics of the Universe is vertiginous, thanks to the ranges of length and
time scales involved. This fact is pleasing in itself, but the sky becomes even more
attractive when probed in the light of physics. Indeed, it is intellectually very satis-
fying, and methodologically very convenient, that the governing equations are scale
independent (see for instance Goedbloed and Poedts 2004). This property reduces
an a priori Herculean task to a humanly tractable one, by reducing the analysis to
essentially a dozen of dimensionless parameters, namely Mach, Reynolds, Knudsen,
etc., numbers. The richness of the overall dynamics then simply corresponds to the
various possible regimes. Scale invariance is also the essence of analogies. Many
a priori unrelated processes and phenomena turn out to have surprisingly similar
intrinsic behaviours, and topics from a priori completely disconnected fields may
turn out to have so much in common that comparison with one another brings pre-
cious insight. Finally, together with orders of magnitude which highlight the gist of
complex phenomena, this fact, in some sense, brings closer to us these unreachable
objects we are interested in, by returning their dynamics back to our intuition.

In the present chapter I will introduce the context which my work falls into, and
present the two problematics I will focus on: the origin of cosmological magnetic
fields in part I, and gravitational fragmentation of stratified structures in part II. The
next chapter will also be introductory, but a bit more technical. There, I will present
the formal tools I will use in order to address those two physics questions.

1.1 Global Cosmological Model: Some Elements

The current Standard Model of Cosmology is called the �CDM model and is illus-
trated in Fig. 1.1. For detailed introductions to it see e.g. (Peebles 1993; Dodelson
2003) or (Bernardeau 2007). It is based on the theory of General Relativity, i.e. the
fundamental equations governing the dynamics are the Einstein Equations, linking

© Springer International Publishing AG 2017
J.-B. Durrive, Baryonic Processes in the Large-Scale Structuring of the Universe,
Springer Theses, DOI 10.1007/978-3-319-61881-4_1
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2 1 Introduction

Fig. 1.1 Artist view of the history of the Universe, with emphasis on the global expansion. Ini-
tially in a hot dense plasma state, the Universe became neutral after Recombination, an event that
essentially coincided with the release of the Cosmic Microwave Background (CMB). It reached
an ionized state again as the first stars and galaxies were born. This transition is called Cosmic
Reionization. It then evolved by gravitational instability to become the structured Universe we
know today. Adapted from NASA/WMAP Science Team

the geometry of space-time (its metric) to its content (energy-momentum tensor).
Furthermore, measurements of the CosmicMicrowave Background (see for instance
PlanckCollaboration 2015a for anoverviewof someof the latest results of thePlanck-
mission) indicate that the Universe was highly isotropic and homogeneous at its early
stages of evolution, and galaxy surveys show that it is still the case statistically speak-
ing on its largest scales, as discussed in Fig. 1.2. Guided by these observations, the
Standard Model is based on the Cosmological Principle which consists in assuming
that the Universe is isotropic and homogeneous. Consequently, the relevant metric
to describe the geometry of space-time at cosmological scales is the simplest (non
trivial) one, namely the Friedmann-Lemaître-Roberston-Walker metric. This metric
contains only one degree of freedom, the scale factor a, which provides the model
with expansion and contraction, as it appears in the link �r(t) = a(t)�x between phys-
ical �r and co moving coordinates �x . The other direct consequence of this principle
is that the energy-momentum tensor describing the matter content of the Universe
in the Einstein Equations has the form T μ

ν = diag(−ρ, P, P, P), where ρ is the
energy density and P the pressure. In this framework, the Einstein equations reduce
to the so-called Friedmann equations,

{
H 2 = 8πG

3
ρ + �

3

ρ̇ + 3H(ρ + P) = 0,
(1.1)
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Fig. 1.2 Both observations and theoretical arguments indicate that (self-gravitating) filamentary
and planar structures are present at all scales and at all times in theUniverse. Top left: (Observations)
Galaxy surveys (here the 2dF Galaxy Redshift Survey–Percival et al. 2001; Cole et al. 2005) clearly
exhibit a filamentary distribution of galaxies, though at the largest scales, this distribution may be
considered as homogeneous and isotropic statistically speaking (e.g. Hogg et al. 2005; Alonso et al.
2015). Top right: (Simulations) The cosmic web: At cosmological scales (a few hundreds of Mpc
are shown here), matter in the Universe is distributed in a filamentary way (shown in this Millenium
simulation is Dark Matter only–Springel et al. 2005). Bottom left: (Observations) Filamentary
structures are ubiquitous in the ISM (here a Herschel-SPIRE 250 μm map of the Polaris flare–
Miville-Deschênes et al. 2010). Bottom right: (Simulations) A forming galaxy ten billion years
ago: a filamentary structure appears also at those scales (a hundred of kpc are shown here) and
those epochs (from Greif et al. 2008). Note that magnetic fields most probably played an important
role at those scales

where H ≡ ȧ
a is the Hubble parameter, G the gravitational constant and � the

cosmological constant. Note that here natural units are used, such that c = 1, and
the global spatial curvature is neglected, as its measured value is very close to, and
still compatible with, zero (e.g. Planck Collaboration 2015b). The fluids considered



4 1 Introduction

in the model are: (i) Radiation, a term which in fact refers to all relativistic material,
essentially photons and light neutrinos, (ii) Dark Energy, a fluid required in themodel
to account for the observed acceleration of the expansion and which corresponds to
the cosmological constant �, (iii) and matter, itself composed of two parts, namely
the usual matter we experience daily, called baryonic in reference to the baryons of
the StandardModel of Particle Physics which represent the bulk of inertia of ordinary
matter, and another type of matter baptized Dark Matter which turns out to be five
times more abundant than baryonic matter (e.g. Planck Collaboration 2015b). It is
called dark because it does not interact electromagnetically and is thus invisible. The
numerous observations requiring its existence are based on its gravitational effects
(gravitational lensing, rotation curves of galaxies, structure formation, etc.). Also, in
the Cosmological Standard Model, it is referred to as cold (hence the C in �CDM)
in the sense that it is non-relativistic.

Each of the fluids can be characterized by its equation of state P = wρ, with a
corresponding value of w: w = 1/3 for radiation, w = −1 for the Cosmological
Constant (i.e. a negative pressure fluid…), and w = 0 for cold matter, i.e. a pres-
sure less fluid. Note however that this pressureless approximation for Dark Matter
is valid only as long as Dark Matter particles are free-streaming, i.e. that flows of
such particles do not cross each other significantly, which is the case on the largest
cosmological length and time scales. Indeed, an important property of Dark Matter
is that it is collisionless, so that its analysis in full generality is quite complicated
because effective fluid approaches are scarcely appropriate and kinetic theory is in
principle required. Numerically, it is in general treated through N -body simulations
(e.g. Springel et al. 2005) but there are attempts considering collisionless hydrody-
namics (e.g. Mitchell et al. 2013). For treaties on collisionless dynamics see e.g.
(Binney and Tremaine 2008) and (Fridman and Polyachenko 1984a, b).

This equation of state is an additional information which closes the system of
Eq. (1.1), thus fully constraining a(t), i.e. we can obtain the expansion history of
the Universe as a function of its constituents by solving this system. But rather than
discussing precisely the solutions, let us instead reformulate the equations as follows.
The first Friedmann equation above may be written as an energy budget

∑
i

�i = 1 (1.2)

where the density parameters are defined as �i ≡ ρi/ρc with ρi (z) the density
of the fluid i and the density ρc(z) ≡ 3H 2/(8πG), called the critical density, is
taken as reference at each redshift. The second equation in (1.1) shows that fluids of
different nature are not subject to the expansion in the same way since the equation
for the evolution of ρ depends on P , and thus on the equation of state, and on the
Hubble parameter, i.e. on the expansion. The outcome is that the energy densities
of the various fluids in the Universe vary differently with redshift i.e. with time,
since redshift is used as a measure of time in Cosmology. Therefore, their relative
proportions vary as the Universe evolves, with�radiation ∝ (1+z)4,�matter ∝ (1+z)3

and �� constant. It then turns out that radiation first dominated the energy content
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(at redshifts above roughly 3600), then matter dominated (0.4 < z < 3600), and
since z = 0.4 the Universe has been in a Dark Energy dominated era.

Finally, note that our need to incorporate the Dark Matter and Dark Energy com-
ponents in the StandardModel may in fact be, at least in part, themanifestation of our
current misunderstanding of the fundamental laws of nature at cosmological scales.
The Standard Model assumes that General Relativity is the relevant law for gravity,
butmany alternative theories of gravity are under investigation. Formore information
on extensions of Standard Cosmology, see e.g. (Peter and Uzan 2013). But while the
fundamental nature of some of its constituents remains unclear to this day, it should
be stressed that the Standard Model manages to account for an impressive amount
of a priori independent observations with astonishingly few parameters.

1.2 Cosmological Chronology: Some Key Moments

The abovemodel is also relevant to a structured Universe, provided we consider large
enough scales at which the Universe is statistically homogeneous and isotropic (e.g.
Hogg et al. 2005; Alonso et al. 2015). But when considering scales below roughly
a hundred megaparsec and after Recombination, this model only provides us with a
global dynamical framework in which matter structures itself gravitationally. Let us
review briefly chronologically some of the milestones of the processes that occurred
during its evolution, focusing on what will be useful for the present manuscript.

Primordial Universe At its very beginning, the Universe was in the state of an
extremely hot and dense plasma. It underwent a fulgurant expansion called Inflation.
Inflation was first introduced in order to try and understand how the Universe could
be as homogeneous and isotropic as observed today: How can extremely distant
places in the Universe be causally connected (hence homogeneity) if not even light
had the time to travel such distances? Inflation is a mechanism which solves this
so-called horizon problem, as well as two additional ones, the flatness and monopole
problems. Inflation lasted typically 10−33 seconds, after which the expansion gentled,
as indicated in Fig. 1.1.

Photonswere coupled tomatter throughThomson scattering as long as the interac-
tion rate was higher than the expansion rate given by the Hubble parameter H . But as
the Universe expanded, this condition ceased to be satisfied, and photons decoupled
from matter: their mean free path increased greatly, becoming larger than the size of
the Universe at that time. Since then, they have been essentially free-streaming, and
we now detect them, almost intact, showing us an image of the early Universe: this
relic radiation is called the CosmicMicrowave Background (CMB). A bit later, as the
energy of photons decreased due to expansion, the reaction H + γ ↔ p + e− which
prevented bound systems of protons with electrons to form, ceased to be at equi-
librium. The Universe became essentially neutral. This period of transition, called
Recombination, occurred when the Universe was roughly 380 000 years old (see
PlanckCollaboration 2015b, for the latestmeasurements of theRecombination time).
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This key transition constitutes a convenient milestone for categorizing studies in
Cosmology, into those dedicated to the Primordial Universe, and those dedicated
to its subsequent evolution, namely the Post-Recombination Universe. The present
manuscript belongs to the latter category, so that the state of the Universe at Recom-
bination will be regarded as our initial condition.

Emergence of the cosmic webHence, at Recombination, the Universe was starless.
It was composed of Dark Matter and primordial gas, essentially Hydrogen (76%)
and Helium (24%). Because during the Primordial Universe era baryons were tightly
coupled to photons, their distribution remained very homogeneous, so that at Recom-
bination their typical density fluctuations were only of δρ/ρ ∼ 10−5 (rms). Dark
Matter however, which decoupled much earlier, had already started evolving under
its own gravity and was thus already somewhat inhomogeneously distributed. Since
Dark Matter dominates the matter content of the Universe, the primordial gas fell
into the DarkMatter gravitational potential wells already formed at these early times
(see Tseliakhovich and Hirata 2010; Fialkov 2014, for an account of the effects of
the relative velocity between Dark Matter and baryons).

Let us just recall the formulation of the well-known Jeans instability criterion
in the simplest case of linear inhomogeneities in an otherwise homogeneous, sta-
tic background (for details, see for instance Lequeux et al. 2005). Combining the
linearized equations of local mass and momentum conservation with the linearized
Poisson equation, and developing the perturbations onto plane-waves, it is straight-
forward (see also Sect. 7.1.1) to show that the dispersion relation relating the angular
frequency ω to the scales k is

ω2 = c2ak2 − 4πGρmean, (1.3)

where ρmean is the mean density and ca the speed of sound. The Jeans criterion for
instability is ω2 < 0, meaning that gravitational collapse overcomes the counter-
acting effect of pressure gradients, in which case the density of initially overdense
regions grows exponentially. In an expanding background, the formal expression of
the dispersion relation is left unchanged, except that k must be replaced by k/a(t)
where k this time is the comoving wave-number and a(t) the time dependent scale
factor. As a result, the initial growth of overdense regions is slower than exponential,
as the expansion plays essentially the role of a time dependent damping term (see for
instance Peacock 1999). Consider now an initial, ellipsoidal overdensity so that we
may distinguish three principal axes. Without expansion, it can be shown that, due
to gravitational collapse, such an overdensity contracts first along the shortest axis,
then along the second shortest and finally along the longest. From this picture, we
may understand that the overdensity first becomes a sheet (collapse in the first direc-
tion), then a filament (second direction) and then a node or halo (third collapse). In
an expanding background, this series of events is modified only insofar as each given
direction first decouples from the global expansion, an event called ‘turn-around’ (cf.
Sheth et al. 2001). The interested readermay consultAngrick andBartelmann (2010),

http://dx.doi.org/10.1007/978-3-319-61881-4_7
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and references therein, who bridge the linear onset of tri-axial Jeans instability with
the later non-linear, virialized stages of resulting sheets, filaments and halos.

But where do initial density perturbations come from? In the paradigm prevailing
today, they originate in quantum fluctuations of the inflaton field that are stretched
to macroscopic scales during inflation (e.g. Lyth and Liddle 2009). Indeed, as con-
firmed by the most recent measurements of the CMB anisotropies, we may under-
stand that inflation seeds the universe with perturbations at all scales, with a nearly
scale-invariant power-spectrum (e.g. Planck Collaboration 2015b). With such initial
conditions, it has been understood that structure formation proceeds in a hierachical
way, essentially bottom-up (i.e. small structures collapse first, see Mo et al. 2010,
for instance). Thus, combining the bottom-up hierarchy with the sequential triaxial
collapse of anisotropic fluctuations, it is natural to expect a coexistence of cosmic
sheets, filaments and halos, as already demonstrated by Zeldovich (1970), (see also
Shen et al. 2006 for theoretical aspects of the statistics of these structures). Thus, in
essence, the outcome of these processes is that gravitational collapse naturally pro-
duces a filamentary topology, which accounts for the overall topology of the cosmic
web on the largest scales, revealed both by numerical simulations and observations
(e.g.Klypin and Shandarin 1983; Van deWeygaert and Bond 2008; Klar andMücket
2010; Eckert et al. 2015; Gheller et al. 2015). Note that sheets and filaments of matter
appear in many other Astrophysical contexts too. In the interstellar medium (ISM)
of galaxies for instance (cf. Fig. 1.2), the sheet-like and filamentary structure of giant
molecular clouds has been known for a long time. There, it actually results from the
conspiring action of gravity, supernova explosions, thermal instability, cloud-cloud
collisions, turbulence andmagnetic fields (e.g. Schneider and Elmegreen 1979; Bally
et al. 1987; Mizuno et al. 1995; Hartmann 2002; Myers 2009; Pudritz and Kevlahan
2013; André et al. 2014; André 2015; Federrath 2016; Kalberla et al. 2016). Finally,
in the cosmological context, it is important to keep in mind that sheets, filaments and
nodes exist not only in the present day cosmic web, but are already present also at
high redshifts, from protogalactic to cosmological scales (see Figs. 1.2, 1.4), while
the Universe is only leaving its Dark Ages during Reionization.

The Epoch of Reionization As the first collapsed objects became dense enough to
initiate nuclear reactions in their core, the first stars, called Population III, were born.
The era during which the Universe did not contain any luminous sources, called the
Dark Ages, lasted roughly 100 Myrs, and the epoch at which the first stars switched-
on is prettily calledCosmic Dawn. Population III stars were chemically pristine since
they formed from a chemically poor gas, and are even called ‘metal-free’.1 Theywere
most likely very massive (hundreds of solar masses, see e.g. Bromm 2013) and very
short lived (lifetimes of the order of one megayear). The second generation of stars
formed from a gas that had been enriched by the chemical elements left over by the
explosive death of the first generation of stars (see for instance Schneider 2012).
The properties of these stars, such as their lifetimes and spectra, are thus different so
that they were baptized Population II stars. Assemblies of such stars are often called
protogalaxies, primordial galaxies or first galaxies. In this hierarchical scenario, the

1The terminology ‘metal’ in Astrophysics is used for all elements heavier than Helium.
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most massive Dark Matter halos formed later, so that we expect the most luminous
sources, namely quasars, resulting from the formation of super massive black holes
to have formed only late in this chronology. These sources (Population III stars,
protogalaxies and quasars) emitted photons of energy above the ionization threshold
of Hydrogen and Helium, thus ionizing the neutral medium in their vicinity. The
ionized region formed around an ionizing source is called a Strömgren sphere, or Hii
region. For details on their formation and evolution see e.g. (Shu 1992) or (Lequeux
et al. 2005), and (Furlanetto et al. 2004) for details specific to the cosmological
context. Little by little, as the number of sources formed increased and the Strömgren
spheres grew and percolated, the ionized fraction of the intergalactic medium (IGM)
increased, until at some point the Universe became fully ionized. This transition from
a neutral to an ionized state is called Cosmic Reionization because the Universe was
in an ionized state for the second time. The period from Cosmic Dawn to Cosmic
Reionization is called the Epoch of Reionization (EoR), and lasted typically 800
Myrs (see Planck Collaboration 2016, for the latest contraints on the EoR deduced
from CMB measurements). Figure1.3 is an artist illustration of the aforementioned
sequence of events, putting emphasis on the percolation of Strömgren spheres. The
physics of Reionization is extremely rich and interesting, and for more details, the
reader is invited to consult (Loeb and Furlanetto 2013), or its digest, pocket version
(Loeb 2010). But for now, just to get a bit more realistic view of what these events
were like at a given epoch, let us look at the results of some numerical simulations.
Figure1.4 corresponds to two snapshots from a cosmological simulation of the EoR
using the EMMA code (Aubert et al. 2015). They show baryons in the Universe at

Fig. 1.3 Another sketch of the history of the Universe (crédit: NASA/CXC/M.Weiss), with empha-
sis on the evolution of baryons during the Epoch of Reionization. Once large enough non-linear
halos are assembled by gravitational collapse, first stars and galaxies begin to form, ionizing pro-
gressively back the intergalactic gas, creating bubbles of Hii (cf. Loeb and Furlanetto 2013). Those
cosmological Strömgren spheres will play a major role in the magnetogenesis mechanism detailed
in part I
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Fig. 1.4 View of the Universe as the first galaxies formed (redshift z = 11), resulting from a
cosmological simulation using the EMMA numerical code (Aubert et al. 2015). Left: Gas temper-
ature distribution. Red areas are fully ionized gas at 104 K, the Strömgren spheres, while the blue
corresponds to neutral Hydrogen at 10 K in the IGM. Right: Three-dimensional view, with the same
color coding. (Image credit: D. Aubert and N. Deparis, Observatoire de Strasbourg)

redshift z = 11, i.e. it is a view of a slice of Fig. 1.3 at roughly 400 Myrs after the
Big-Bang. Looking at Fig. 1.4, note two facts that will be of great importance for
the works presented in this manuscript, notably Chap.3: (i) the so-called Strömgren
spheres, in red in this figure, are not truly spherically symmetric, even before starting
to overlap with neighboring Hii regions, and (ii) the IGM, in blue in this figure, is
not homogeneous, but very clumpy. Both properties will play a major role in part I
of this manuscript.

1.3 Focus on Two Questions

The above section introduced the global cosmological context. Within its frame, we
are now going to focus on two specific aspects.

TheOrigin of CosmologicalMagnetic Fields The origin of cosmological magnetic
fields is a major open question in Cosmology. Indeed, as we will see in a moment,
not only do we know that galaxies and galaxy clusters possess significant magnetic
fields, both at present and in the remote universe, but also recent high energy gamma
ray observations suggest that a substantial fraction of the entire present day inter-
galactic space may be actually magnetized. Numerous mechanisms for generating
such magnetic fields at cosmological scales have been proposed, operating mainly in
the primordial Universe. However, post-recombination mechanisms based on well
established physics exist too. Establishing the origin of cosmological magnetic fields

http://dx.doi.org/10.1007/978-3-319-61881-4_3
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is a major challenge for observational Astrophysics that will be tackled notably with
the forthcoming Square Kilometre Array (see the chapters on cosmic magnetism, pp.
371-597, of Bourke et al. 2015, for instance). In part I of this manuscript, after a brief
review of cosmological magnetogenesis models in general, I will focus on a partic-
ular one, of astrophysical nature. As we have recalled above, during the so-called
Cosmic Dawn, the first luminous sources photoionized the neutral IGM surrounding
them. I will showwhere, under what conditions and up to what strengths, this process
may have generated magnetic fields on intergalactic scales, thus contributing to the
magnetization of the Universe before, and alongside structure formation.

Fragmentation in the Cosmic Web As we have seen, based on joint observational
and theoretical arguments, we are brought to the conclusion that matter in the Uni-
verse is distributed in a web-like manner, with sheets and filamentary structures
connecting nodes or halos at almost all scales and epochs. I have not mentioned it
yet but cosmological simulations suggest that, on cosmological scales, these nodes
are supplied withmatter, baryonic and dark, flowing along the filaments, and that part
of this accretion occurs intermittently (e.g. Kereš et al. 2009; Dekel et al. 2009a, b;
Sánchez Almeida et al. 2014). This suggests that denser clumps of matter might
form not only within the nodes of the cosmic web, but also in either voids, walls
or filaments. It is fair to mention that, as has been pointed out, a fraction of the
clumps may be of artificial origin due to numerical effects that are inherent to classi-
cal Smooth Particle Hydrodynamics numerical codes (see Hobbs et al. 2013; Nelson
et al. 2013, for adiscussion), and less present in simulations based on moving mesh
techniques (cf. Springel 2010). However, the rest of the clumps most probably has a
true physical origin (Hobbs et al. 2016). While the so-called Lyman-α forest appear-
ing in the spectra of distant quasars is interpreted as being due to intervening cosmic
filaments (cf. for instance Chap.7, Galaxy formation physics, by T. Abel, G. Bryan
and R. Teyssier in Chabrier 2009), the state, smooth or fragmented, of the IGM gas
on the largest scales of the cosmic web is still observationally poorly known, except
perhaps in a few specific cases on intermediate scales (e.g. the gas bridges between
cluster pairs revealed by the Plank mission—Planck Collaboration 2013). Detecting
this gas and determining its dynamical state belongs to the major objectives of both
the Square Kilometre Array (e.g. Bourke et al. 2015, p.695) and the Athena mission
of the European Space Agency (Nandra et al. 2014).

Are the clumps in filaments and cosmic walls observed in cosmological numerical
simulations solely the product of the growth of primordial overdensities? Are these
gas clumps always subtended by collapsed Dark Matter haloes, or is it possible that
baryon fragments form and grow thanks to sub-grid gravitational instabilities? As
we will see, this actually raises the general following question, relevant not only to
the cosmic web:How does gravitational instability occur in stratifiedmedia?My
motivation in part II has been to answer this question and investigate to which extent
the clumps in cosmological sheets and filaments may have formed in situ through
gravitational instability.

Before diving into the depth of each of these questions, let us begin by recalling
some of the key physical ingredients that underlie them both.

http://dx.doi.org/10.1007/978-3-319-61881-4_7
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Chapter 2
Tools

Baryonic matter in the Universe, apart from extremely rare exceptions like planets
and us, is in the plasma state,1 not necessarily but possibly magnetized. The good
and fascinating news is that the laws governing plasma physics are scale invariant
(see e.g. Goedbloed and Poedts 2004). Plasma physics developed, understood and
experimented with in laboratories, is thus an essential tool for Astrophysicists and
Cosmologists. It is particularly essential for me, because I am directly interested
in the question of the origin and evolution of cosmological magnetic fields. But
also, generally speaking, it is often very fruitful to learn from another field what the
relevant methods are. In Sect. 7.2 and beyond, I will give an example of this fact, as I
will explore gravitational fragmentation, without considering magnetic fields (yet),
in the lines of studies performed in the plasma literature. But finally, I must add that
in fact plasma physics is worth studying for its own intrinsic beauty. More precisely,
my personal interest in it comes from the fact that it is a field of physics which
is both very intuitive, because we are familiar, to some extent, with the quantities
involved, and yet, the more we study plasmas, the more we discover that they may
be extremely surprising and rich of subtleties. I also enjoy the fact that we can (in
general) visualize the phenomena at play, and make the link between the equations
and what we see, which is far less evident in fields like quantum and particle physics
for instance.

Let us then consider that baryonic matter in the Universe is a plasma, which
is largely driven by gravity, and in particular by its own gravitation. Therefore, to
understand the Universe, it is crucial to master as well as possible the formal tools
to describe self-gravitating plasmas, i.e. magnetic fields and gravity. To this day,
the most general theoretical framework to describe gravity, and thus to model the
Universe, is that of General Relativity. However, for the questions I will address

1Throughout my manuscript, I take the liberty to use the term plasma loosely to designate inter-
changeably ionized and neutral fluids except, of course, in cases where the ionization state is
essential.
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in this manuscript, the relevant range of parameters is such that my study does
not require this general framework. Indeed, although the distances considered here
are essentially cosmological, typically of the order of one Mpc, they remain small
compared to the curvature of the Universe. Even to consider the expansion of the
Universe, a Newtonian approach, complemented with the use of the scale factor and
comoving coordinates, is perfectly relevant. Also, densities are small enough to only
weakly curved space-time (noblackhole physics for instance) andvelocities are small
compared to the speed of light so that we neither need to consider gravitational waves
nor any special relativistic effect (as opposed to studies of AGN jets for instance).
This study will thus be conducted using Newtonian dynamics.

Which approach are we going to adopt here? Due to their intrinsic limitations,
numerical simulations are not able to capture fully the breadth of time and length
scales involved in structure formation, especially in diluted, numerically under-
sampled regions of space. The analytical approach, adopted here, is crucial for
understanding fully the underlying physics, and is complementary to numerical sim-
ulations. Finally, just like the personal reason why I am focusing on plasma physics
evoked above, choosing the analytical approach is also worth for the sheer pleasure
of it.

2.1 Electromagnetism

Any vector field, that vanishes suitably quickly at infinity, is entirely determined
by its divergence and curl.2 The divergence and curl of the electric and magnetic
fields are determined in a coupled manner, constituting Maxwell’s equations for
electromagnetism. In Gaussian (CGS) units, they read

⎧
⎪⎪⎨

⎪⎪⎩

�∇ × �E = − 1
c∂t �B (Maxwell-Faraday)

�∇ × �B = 1
c∂t �E + 4π

c
�J (Maxwell-Ampère)

�∇ · �E = 4πρq (Maxwell-Gauss)
�∇ · �B = 0 (No Magnetic Monopoles)

(2.1)

while in SI units, they read

⎧
⎪⎪⎨

⎪⎪⎩

�∇ × �E = −∂t �B (Maxwell-Faraday)
�∇ × �B = 1

c2 ∂t �E + μ0 �J (Maxwell-Ampère)
�∇ · �E = ρq

ε0
(Maxwell-Gauss)

�∇ · �B = 0 (No Magnetic Monopoles)

(2.2)

2For additional details, see for instance the following discussion by Kirk T. McDonald on the
Helmholtz decomposition: http://puhep1.princeton.edu/~kirkmcd/examples/helmholtz.pdf.

http://puhep1.princeton.edu/~kirkmcd/examples/helmholtz.pdf
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where �J is the total current density and ρq the total charge density. The fundamental
constants μ0, ε0 and c are linked by μ0ε0 = 1

c2 . Note that my main plasma physics
reference during the first part of my Ph.D. has been Krall and Trivelpiece (1973)
who privilege Gaussian units, while later it has been (Goedbloed and Poedts, 2004)
and (Goedbloed et al., 2010) who work in SI units. This is the reason why my work
on magnetogenesis, presented in part I, is formulated in Gaussian units, while the
part mentioning magnetic fields in my work on gravitational fragmentation, in part
II, is formulated in SI units. This should not be a difficulty for the reader since the
equations are the same, up to multiplicative constants. As a reminder, as far as charge
density, electric and magnetic fields are concerned we have

ρq,cgs = ρq,SI√
4πε0

, �Ecgs = √
4πε0 �ESI, �Bcgs =

√
4π

μ0

�BSI. (2.3)

The four Eqs. (2.1) or (2.2) do not have the same nature: The two relations gov-
erning the curl of �E and �B are dynamical, corresponding to evolution equations,
while those on the divergences should be seen as initial conditions. Indeed, taking
the divergence of the Maxwell-Ampère and Maxwell-Faraday equations, together
with the local charge conservation equation �∇ · �J + ∂tρq = 0, gives (in SI units)

⎧
⎨

⎩

∂t

( �∇ · �E − ρq
ε0

)
= 0,

∂t

( �∇ · �B
)

= 0.
(2.4)

Hence, due to charge conservation, if the Maxwell-Gauss equation is satisfied ini-
tially, then it remains so during the whole evolution, and similarly for �∇ · �B = 0.
In that sense they constitute initial conditions for the evolution equations Maxwell-
Faraday and Maxwell-Ampère.

In the non relativistic limit, displacement currents, corresponding to the term
c−1∂t �E , are negligible, so that in this manuscript we will neglect this term. The
resulting set of equations is usually called ‘Pre-Maxwell equations’, because histori-
cally the displacement current term was introduced by J. C. Maxwell to ensure local
charge conservation.

While the electromagnetic fieldmay propagate in vacuum (ρq = 0 and �J = �0), we
are interested in electric and magnetic fields evolving with matter. The quantities ρq
and �J acting as sources in the above Maxwell equations are themselves governed by
fluid equations inwhich �E and �B intervene.All these equations together constitute the
MHD equations, describing the complex intertwining of matter and electromagnetic
fields, and that we shall now have a look at.
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2.2 Magneto-Fluid Dynamics

I want to introduce the ideal MHD equations from a rather fundamental description,
that of kinetic theory, because it will be the starting point of part I, but also because
it is intellectually satisfying to have an idea of their fundamental origin rather than
simply admiting them. However, the derivation presented below is a straight-to-the-
point one. I omit a certain number of details that are, in my opinion, very important to
be clear about the meaning and validity of the equations that we are dealing with, but
that are unnecessary to expose here. For a precise discussion of the present implicit
averages and unmentioned assumptions see for instance the very good Chaps. 2 and
3 of Krall and Trivelpiece (1973).

From orbit, to kinetic, to fluid Consider a collection of particles of various
species, hereafter tagged by a symbol α, and characterized by their charge qα and
massmα. They are for example electrons or protons. The equation of motion of each
of these charged, non-relativistic particles evolving in an electric field �E , magnetic
field �B and gravitational potential φ, is given by Newton’s second law (Gaussian
units)

d �v
dt

= qα

mα

(

�E + �v × �B
c

)

− �∇φ. (2.5)

Thismany-body description, in which themotion of every single particle is taken into
account, is in general not tractable. However, in the vast majority of situations, it is in
fact not necessary for answering our questions. Indeed, because we are interested in
systems with extremely large numbers of particles, say of the order of the Avogadro
number, a statistical description of the system, in terms of macroscopic variables
(like density, temperature, pressure, etc.), is perfectly relevant and sufficient. It is
however good to keep in mind that by our choice of description, we are leaving
behind some information, so that some plasma properties and phenomena are absent
in the formalism we will adopt here.

The study of the trajectory of a single isolated charged particle is called orbit
theory and is well understood. The difficulty comes from the fact that a plasma is
a collection of a large number of interacting particles. Collective effects are well
described statistically. The point is to partition the system into volumes that are large
enough to neglect statistical fluctuations due to the discreteness of the particles they
contain and treat the medium as a continuum, but small enough to use differential
calculus and talk about fluid elements. In kinetic theory, the information on both the
(probable) number of particles and their velocity distribution is retained by working
with the distribution function fα(t, �r , �v). By definition, the probable number of par-
ticles of type α at position �r with velocity �v in the volume element d3�rd3�v is equal to
fα(t, �r , �v)d�rd �v. Note that volume elements in this description are six-dimensional
since points are described in the six-dimensional space (�r , �v) called phase space.
Liouville’s theorem states that in the absence of binary interactions between parti-
cles, density in phase space is constant in time ( d fαdt = 0).Nowcollisions, for instance,
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modify the distribution function because it is a process that changes the velocity of
particles. The evolution of fα is governed by the following equation

d fα
dt

= ∂t fα|s , (2.6)

which we will refer to as the Boltzmann equation. On the right hand side, the source
term is usually the termmodeling collisions, but this term corresponds to any process
which sources the distribution function. For example in Chap. 3, we will model
photoionization processes as a source term in this equation since it also modifies the
velocity of particles, and in fact modifies the number of particles too. Now, in the
six-dimensional phase space, by definition of the total time derivative, we have

d fα(t, �r , �v)

dt
≡ ∂t fα + d�r

dt
.
∂ fα
∂�r + d �v

dt
· ∂ fα

∂�v (2.7)

so that, using Newton’s second law (2.5) for each species α, the Boltzmann equation
may be explicited as

∂t fα + �v.
∂ fα
∂�r +

[
qα

mα

(

�E + �v × �B
c

)

− �∇φ

]

· ∂ fα
∂�v = ∂t fα|s . (2.8)

This equation contains a lot of information, and often too much for our purposes.
The fluid description consists in leaving behind the information about the whole
distribution of velocities, by averaging, inside each volume element, on the velocity
variable. This is called the fluid reduction, because we are reducing the amount of
information carried in the equations we are manipulating.

Now, since we are dealing with a system containing various species α, we may
reduce the kinetic description to a fluid one, for each of these species. Doing so
consists in working with

⎧
⎪⎨

⎪⎩

nα = ∫
fαd3�v

�Vα = 1
nα

∫ �v fαd3�v
Pα = mα

∫ ( �Vα − �v
) ( �Vα − �v

)
fαd3�v

(2.9)

which are respectively the number density, the velocity and the pressure tensor of
species α. These are called macroscopic quantities, because we are now only con-
sidering the averaged velocity �Vα inside each volume element rather than the micro-
scopic details of the distribution of velocities carried by the full distribution function.
To derive the equations governing these quantities, one has to evaluate the various

http://dx.doi.org/10.1007/978-3-319-61881-4_3
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moments (i.e. first multiply the equation by powers of �v and then integrate over the
entire velocity space) of the Boltzmann equation. This means evaluating

∫

gi

[
d fα
dt

− ∂t fα|s
]

d3�v = 0 (2.10)

where for instance the first three moments are

g0 = 1 0th moment: mass conservation
g1 = mα�v 1st moment: momentum conservation
g2 = 1

2mαv2 2nd moment: energy conservation
(2.11)

and yield respectively the mass, the momentum and the energy conservation equa-
tions of species α. The system is then described as multiple interacting fluids. This
description is thus called the multi-fluid description.

Keeping track of the individual properties of each species is not always necessary,
and despite the existence of multiple components, the description is often further
reduced to a mono-fluid description. This consists in working in the center-of-mass
with the quantities

⎧
⎪⎨

⎪⎩

ρ = �αnαmα

�V = 1
ρ
�αnαmα

�Vα

P = �αmα

∫ ( �V − �v
) ( �V − �v

)
fαd3�v

(2.12)

being respectively the mass density, the center-of-mass velocity and the total center-
of-mass pressure tensor in the one-fluid. With the above information, one may write
the fluid equations in full generality. However, as far as the fluid equations are con-
cerned, in part II we will not manipulate them in full generality, as exposed in Krall
andTrivelpiece (1973) for instance, but in the idealMHD limit. For example, pressure
is described by the above tensor, but when viscosity is small, as we shall assume in
this manuscript, it becomes diagonal and proportional to the scalar pressure: P = pI
where I is the identity tensor. The starting point in part I however, will be the very
general Boltzmann equation (2.8).

The zeroth moment gives the mass conservation equation

∂tρ + �∇ · (ρ�v) = 0. (2.13)

As its name suggests, this equation simply states that mass is conserved: In a given
volume element, if the amount of matter varies (∂tρ), it necessarily comes from the
imbalance of the incoming and outcomingmatter (formally: the divergence operator)
from neighboring volume elements (there is no source term here).

The first moment gives the following momentum conservation

ρ
d �v
dt

= ρ
(
∂t �v + �v · �∇�v

)
= −�∇ p + �j × �B − ρ �∇φ. (2.14)
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This corresponds to Newton’s second law for a fluid element of the mono-fluid.
It stems from Newton’s law on single particles (2.5), but is fundamentally different
from it: We are now considering fluid elements, so that quantities are per unit volume
(mass and current densities), the concept of pressure arises due to the collection of
particles, and also the acceleration is now either Lagrangian ( d �v

dt , evaluated while
moving with the fluid) or Eulerian (∂t �v, evaluated at a fixed position). By order of
appearance, the terms on the far right hand side correspond to the force (density) due
to pressure gradients, to the Lorentz force and finally to the gravitational force.

Ohm’s law and induction equation From these equations, we may derive an
extremely important relation, namely the equation governing the current density in
the plasma, called Ohm’s law. I defer its presentation in full generality to Sect. 3.2.2,
where it will be at the center of the discussion. For now, let us admit here its simplest
form (cf. e.g. Shu 1992)

�J = σ( �E + �v × �B), (2.15)

where σ is the conductivity. Plugging it into Ampère’s law, we obtain the equation
governing the evolution of the magnetic field, called the induction equation

∂t �B = �∇ ×
(
�v × �B

)
+ η� �B. (2.16)

The first term is the convective term, resulting from the interaction between the
fluid and the magnetic field, and η = (σμ0)

−1 is the magnetic diffusivity, assumed
to be a constant. How efficient is magnetic diffusion in the cosmological context?
Consider the diffusive limit, in which the convective term is negligible. Then �B obeys
a diffusion equation. In terms of orders of magnitude it reads 1

tD
∼ η

L2 , where tD is
a characteristic timescale and L a characteristic length scale of this diffusion. Since
cosmic magnetic fields are spread on the largest scales of the Universe, we can try
and estimate how much time it would take a magnetic field created at some point to
reach such scales by simple diffusion. Taking for L the Hubble radius c

H0
∼ 4 × 1018

m and characterizing the intergalactic medium by a typical magnetic diffusivity of
η ∼ 10−6 �.m, we obtain a diffusion time of the order

tD ∼ L2

η
∼ 1031 years, (2.17)

which is much more than the age of the Universe of tH ∼ 1010 years. This means
that due to the high conductivity (small η) of the intergalactic medium and the large
scales involved, once a magnetic field is created somewhere, it does not diffuse. We
say that it is ‘frozen’ into matter. Therefore, in the rest of this manuscript, we will
not take this diffusion term into account.

So how does �B evolve with the expansion of the Universe? Let us look at a
simple example: Consider a sphere of plasma of radius r undergoing a uniform and
isotropic contraction. Since the �B field is frozen into matter, by mass conservation

http://dx.doi.org/10.1007/978-3-319-61881-4_3
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in this volume and flux conservation through its surface, we have that ρr3 and Br2

are constant (cf. e.g. Kulsrud 2005). Thus

B

ρ
2
3

= constant, (2.18)

and in the Standard Model of Cosmology ρ ∝ a−3 (cf. Chap.1) so that

B ∝ a−2 (2.19)

that is B ∝ (1 + z)2. This evolution of �B is called the adiabatic dilution and is valid
only for the largest scales since it is derived in the FLRWhomogeneous and isotropic
framework.

Higher moments: A need for Closure The zeroth moment of the Boltzmann
equation (2.8) yields a relation (mass conservation) between the zeroth moment of
the distribution function (density) and the first moment (velocity). The first moment
of the Boltzmann equation yields a relation (momentum conservation) between the
zeroth, the first, and the second moment (pressure) of the distribution function. The
second moment of the Boltzmann equation yields a relation (energy conservation)
between the zeroth, first, second and third moment (heat flux) of the distribution
function. The pattern that emerges turns out to be general: The equation governing
the nth moment always contains the (n + 1)th moment too. This is problematic
because it means that the resulting system of equations is never closed this way.
Everytime we add an equation, we add a new variable. Hence, rather than pursuing
taking higher and higher moments, the usual procedure consists in stopping at the
equation on the second moment, because only the three first moments have a simple
physical interpretation, and to close the system with an additional equation, other
than the followingmoment, dictated by physical arguments. This additional equation
is called a closure relation. The choice of this relation strongly impacts the relevance
and domain of validity of the model. In that sense, there are as many fluid models as
closure relations. In this manuscript we will consider a classical model, namely that
of polytropic fluids, which is interesting for its large domain of validity. Let us now
see where it comes from.

2.3 Thermodynamics

In this manuscript, the choice of closure relations is as follows. In the most general
case, pressure and density are related by an equation of state, corresponding to a
relation of the form p = p(ρ, s) or p = p(ρ, T ), where s and T are respectively the
specific entropy (entropy per unit mass) and the temperature. Now, let us consider
that baryons form a fluid that is an ideal gas, i.e. such that

http://dx.doi.org/10.1007/978-3-319-61881-4_1
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p = ρkBT

m
(2.20)

where m is the mass of a single particle, T is the temperature and kB is Boltzmann’s
constant. A first simple case corresponds to that of an isothermal fluid, for which
temperature is uniform. Then

p = κρ (2.21)

where κ = kBT
m is spatially constant. More generally, one can show (cf. Appendix F.2

of Binney and Tremaine 2008) that for an ideal gas the specific entropy s is linked
to the number q of internal degrees of freedom of the particles by the relation

s = kB
m

ln

(
T (q+3)/2

ρ

)

+ constant. (2.22)

This relation brings in another interesting special case, namely the case in which the
entropy is uniform (isentropic fluid). Then

ρ ∝ T (q+3)/2 = T
1

γ−1 (2.23)

where

γ = q + 5

q + 3
(2.24)

is called the polytropic exponent. Combining thiswith (2.20),we obtain the following
polytropic equation of state

p = κργ (2.25)

where κ is a constant that depends on the specific entropy. We see from (2.21) that
the isothermal equation of state corresponds to that of a polytrope with γ = 1.

Note that in these cases the equation of state is of the form p = p(ρ). A fluid
having this property is said to be barotropic. In fact, for a non magnetized fluid to
be at rest in a gravitational field (which will be the case of study in Chap.6), it
must necessarily be barotropic. Indeed, the hydrostatic equilibrium, marked with the
subscripts 0, is then given by Eq. (2.14) with vanishing velocity and magnetic field,
that is

�∇ p0 + ρ0 �∇φ0 = �0. (2.26)

Taking the curl of this relation gives �∇ × (ρ−1
0

�∇ p0) = �0 and thus at every position
we have

�∇ρ0 × �∇ p0 = �0. (2.27)

This means that the gradient of density and the gradient of pressure are aligned
everywhere, which implies that surfaces of constant density need to coincide with

http://dx.doi.org/10.1007/978-3-319-61881-4_6
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surfaces of constant pressure for a static solution to exist. Therefore, an unmagnetized
fluid at rest in a gravitational field necessarily satisfies p0 = p0(ρ0), i.e. is barotropic.

It is thus particularly natural to consider a polytropic equation of state for the
equilibrium. However the choice of equation of state, used as closure relation here,
for the out of equilibrium fluid, is not evident. As we will see in Sect. 9.2, when
studying the evolution of perturbations in a fluid, depending on the timescales of
evolution of the perturbations, there may or may not be time for heat transfer to
happen. The relevant closure relation for the perturbed fluid may then differ from
that of the equilibrium fluid. This difference gives rise to buoyancy, and thus to
g-modes (using the stellar physics terminology) and convection. This stresses the
importance of the choice of closure. Except in Sect. 9.2 devoted to it, we will in this
manuscript deliberately switch-off convection by considering Eq. (2.25), both for
the equilibrium state and for out of equilibrium perturbations.

2.4 Gravitation

As far as gravity is concerned, in the Cosmology andAstrophysics literature, equilib-
rium states are generally discussed in terms of gravitational potentials (�) rather than
in terms of gravitational accelerations (�g). We usually say that ‘baryons fall in the
potential wells induced by Dark Matter’ for instance. However, as we will discuss in
Sect. 7.1.3, in this manuscript I will describe perturbations in terms of forces, rather
than in terms of energies and potentials. In that sense �g will turn out to be a more
natural variable to discuss perturbations. Hence, I will here use both� and �g, though
in essence both descriptions contain the same information, since one is (minus) the
gradient of the other

�g = −�∇�. (2.28)

Note that because of this definition, the vector field �g is irrotational

�∇ × �g = �0. (2.29)

As we will see in Sect. 8.2, the linearized version of this constraint will be a key
ingredient in our study. The gravitational acceleration �g is governed by

�∇ · �g = −4πGρ (2.30)

so that, with definition (2.28), the gravitational potential � is governed by

�� = 4πGρ (2.31)

where G is Newton’s constant. These equations are called Poisson equation, respec-
tively for the gravitational acceleration and for the gravitational potential. Physically,
the form of Eq. (2.31) is very meaningful. Indeed, Newtonian gravity corresponds

http://dx.doi.org/10.1007/978-3-319-61881-4_9
http://dx.doi.org/10.1007/978-3-319-61881-4_9
http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_8
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to a double limit of Einstein’s theory of General Relativity: the weak field and non-
relativistic limits. More precisely (cf. e.g. Barrau and Grain 2011), linearizing Ein-
stein’s field equations around a flat space-time (weak field) results in a wave equa-
tion, sourced by the energy content of the Universe.3 This propagation of space-time
perturbations corresponds to gravitational waves, which travel at the speed of light
because it is governed by the d’Alembert operator c−2∂2

t − �. Then, when taking
the non-relativistic limit, corresponding formally to an infinite speed of light, the
d’Alembert operator makes way to the Laplace operator that appears in (2.31). In
other words, Eq. (2.31) states that gravity is instantaneous in the Newtonian regime
considered here. Finally, note that it is common to find in the literature an opposite
choice of sign in the definition of φ and �g and thus in Poisson equations (e.g. Goldre-
ich and Lynden-Bell 1965; İbanoğlu 2000). The convention-independent quantity is
the sign of the gravitational force term in the momentum conservation.

2.5 Self-gravitating Magnetized Structures

Gathering the material introduced above, we may state that the set of equations
governing the dynamics of a self-gravitating ideal polytropic magnetized fluid reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + �∇ · (ρ�v) = 0 (Mass conservation)

ρ
(
∂t �v + �v · �∇�v

)
= −�∇ p + �j × �B − ρ �∇φ (Momentum Conservation)

�j = 1
μ0

�∇ × �B (Maxwell-Ampère)
p = κργ (Polytrope)

∂t �B = �∇ ×
(
�v × �B

)
(Induction Equation)

�φ = 4πGρ (Poisson Equation)

(2.32)
This is our starting point, from which we are going to do the two following things.

First, there is one other absolutely crucial ingredient for the Astrophysical and
Cosmological context that I have not mentioned so far: Radiation. Radiation is of
course essential to probe the Universe because it is the main element we can directly
collect and analyze, but it also plays, inmany situations, an important dynamical role.
The most evident ones are radiation pressure, and heating or cooling, by evacuating
energy through radiative processes. But in the first part of this manuscript, I will
reveal amore subtle role radiationmayplay: It can generatemagnetic fields! Formally
speaking, I will expose how a radiation field may modify the induction equation in
the system (2.32) above, by acting as a source term in the Vlasov equation (2.8) and
thus as a source term in the induction equation.

3The right hand side of (2.31) is the ‘residue’ of this source term once the non-relativistic limit is
taken in addition.
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Second, in the Universe everything moves, rotates, merges, accretes, etc. Nothing
is at rest. Therefore, structures are permanently subject to perturbations which either
make them oscillate or, under some circumstances, expose them to instabilities.
Apprehending precisely how, when and where instabilities may occur is a key to
understand the shaping of the Universe. The second part of this manuscript is thus
dedicated to studying how sensitive structures are to the perturbations they are subject
to, i.e. how instabilities may develop. Formally speaking, we will linearize the set of
Eqs. (2.32) and perform a normal mode analysis, in the light of the so-called spectral
theory.
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Part I
Generation of Cosmological Magnetic

Fields

Magnetic fields are ubiquitous in the Universe. They are present at all scales and all
epochs (cf. Sect. 3.1.1). Yet, it is still unclear where, when, and how precisely they
were generated. This part of the manuscript is dedicated to the question of the origin
of cosmic magnetic fields on large scales which is still an open, and major, problem
of astrophysics and cosmology. In Chap. 3, we will first see that in the history of
the Universe, many environments have been favorable to the generation of magnetic
fields. After a brief overview of the various magnetogenesis models proposed in the
literature so far, I will focus on a particularmechanism, of astrophysical nature,which
was first suggested by Langer et al. (2005), and the physics of which I developed
thoroughly in Durrive and Langer (2015). Then, in Chap. 4, I will present a detailed
model that I have developed, together with M. Langer, H. Tashiro, and N. Sugiyama,
to estimate the level at which this mechanism contributed to the magnetization of
the Universe before, and alongside early luminous structure formation. Finally, in
Chap. 5, I will show preliminary results of an investigation I am conducting with
D. Aubert based on cosmological numerical simulations, which complements the
aforementioned analytical works.
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Chapter 3
Magnetogenesis by Photoionization

3.1 Magnetic Fields and Their Generation

DarkMatter andDark Energy are exciting to explore, but we still know, all in all, very
little of the physics of these exotic constituents of the Universe. On the contrary, there
is a component in the Universe that we know is also omnipresent, of which we know
the physics very well, and yet that remains puzzling for cosmologists: cosmological
magnetic fields.

3.1.1 Magnetic Fields in the Universe

Magnetic fields are ubiquitous Indeed, magnetic fields are ubiquitous in the Uni-
verse. Their stunningly wide length and strength ranges basically follow the simple
rule that the larger the scale, the weaker the strength (e.g. Vallée 1990, 2011). For
instance magnetars are the most magnetized objects with 1015 G,1 while normal stars
typically contain 1G fields. In the interstellar medium, several 10−6 G are usual at
kpc scales, and 10−6 G in clusters of galaxies at the Mpc scale. Finally, the largest
structures such as cosmological filaments may have some 10−10 G fields and as we
shall see below, cosmological voids may host 10−16 G magnetic fields. For a review
of the observational aspects of large scale magnetic fields, see Ryu et al. (2011) for
instance.

The detection and measurement of extra-terrestrial magnetic fields has been an
ongoing, flourishing activity since the end of the 19th century (following the sug-
gestion of Zeeman 1897) and the beginning of the 20th century. For instance, Hale
(1908) was the first to confirm observationally the existence of extra-terrestrial mag-
netic fields by observing sun-spots. Much progress has been made since, and it is
nowadays well known that magnetic fields play a major role in the evolution of our

11 G=10−4 T.
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Sun (cf. the 11 years cycle, e.g. Priest 2014) and in the formation and evolution of
stars in general (e.g. Petit et al. 2014). Since these pioneering observations, vari-
ous techniques have been developed, based on fundamental physical effects, such as
the Zeeman effect, synchrotron emission, Faraday rotation and polarization of opti-
cal starlight. For a clear presentation of these techniques and methods, see Widrow
(2002) for instance.

All those techniques have allowed us to detect magnetic fields, and measure their
strengths, not only in our galaxy (Haverkorn 2015, and references therein), but also in
extragalactic structures on large scales (Kronberg 1994). It is striking that magnetic
fields were found in all the galaxies probed. What is more, in most of the observed
galaxies, the magnetic field has a spiral structure which is often observed not only
in spiral galaxies (as in M51, see Fig. 3.1), but in almost every galaxy, even in ring,
flocculent and irregular galaxies (Fletcher 2010; Beck 2011). This feature hints at a
mechanism, of the dynamo type, which would be responsible for the organisation of
the B-field lines on galactic scales (Brandenburg and Subramanian 2005). Moreover,
the strength measured is of the order of a few tens of µG, such that magnetic fields
are actually dynamically important in galaxies: the energy density they represent is
typically ρmag = B2

8π ∼ 1 eV cm−3 since for instance B ∼ 5µG in the Milky Way
at the scale of the spiral arms (see Fig. 3.1 showing a map of the magnetic field in
the Milky Way deduced from the Planck satellite data). Such energy densities are
essentially of the same order ofmagnitude as those of other components: cosmic rays,
and thermal and turbulent gas motions. Remarkably, fields with similar strengths are
detected not only in galaxies of our neighbourhood, but also in distant, early galaxies
(e.g. Bernet et al. 2008). This implies that such strong magnetic fields were already
present in cosmic structures when the Universe was less than half its present age.
This puts a severe constraint on the generation and evolution mechanisms within
cosmic structures.

Similar observations have allowed one to detect magnetic fields in larger struc-
tures, namely in clusters of galaxies (for reviews, see Carilli and Taylor 2002; Govoni
and Feretti 2004; Feretti et al. 2012; Brüggen 2013).Microgauss fields have thus been
measured which, in most cases, are rather turbulent on scales ranging from a few
hundreds of parsecs up to tens of kiloparsecs (Feretti et al. 2012). In some clusters,
however, magnetic fields appear to possess a regular component, coherent on scales
reaching 400 kpc, associated with intra-cluster filamentary radio relics (Govoni et al.
2005). On yet larger scales, those of the cosmic web, it is fair to say that magnetic
fields remain observationally largely elusive. While hints of substantial magnetiza-
tion (at the 2 µG level) along the filamentary region at the south-west of the Coma
cluster have been reported (Bonafede et al. 2013), a clear detection of B-fields on
the scales of the cosmic web has yet to be claimed. As I mentioned in Chap.1, for
that we might have to wait for the SKA to be operational. So far, only a few indirect
constraints are available in the literature as we will see below.

Cosmological magnetic fields Dense regions are highly magnetized and there-
fore seem like the place to look for information on magnetic fields. However, they
are also highly turbulent, so that magnetic fields have lost their initial properties

http://dx.doi.org/10.1007/978-3-319-61881-4_1
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Fig. 3.1 Left Magnetic field in our Galaxy (credit: ESA and Planck collaboration). The colour
scale represents the total intensity of dust emission, revealing the structure of interstellar clouds in
the MilkyWay. The texture is based on measurements of the direction of the polarized light emitted
by the dust, which in turn indicates the orientation of the magnetic field. Right Magnetic field in
galaxy M51 (Fletcher et al. 2011)

(e.g. Dolag et al. 2002). In order to probe the origin of those fields, it is therefore
on the contrary more appropriate to look at the less turbulent Intergalactic Medium,
where magnetic fields were less processed and hopefully remained in their primitive
configuration. But how strong are such cosmological magnetic fields? To this day
observations lead to the following upper and lower bounds.

Upper bounds. Wasserman (1978) and Kim et al. (1996) studied the effect of a
background magnetic field, present at Recombination, on the subsequent structure
formation. They assessed the effect on the velocity and density fields of matter.
Fluctuations in the magnetic field induce fluctuations in the velocity andmatter fields
through the Lorentz force. Hence they modify the spectrum of density perturbations,
generating additional power at small scales. Therefore a magnetic field increases
the number of collapsing objects and thus of forming stars, so that its presence
makes the Epoch of Reonization finish earlier. The magnetic field at Recombination
therefore could not have been too strong, namely not stronger than 10−9 G, otherwise
too many stars would have been formed to be consistent with our knowledge of the
Reionization epoch. Note however that further investigations were performed, and no
consensus has been reached yet. Indeed, for instance Tashiro and Sugiyama (2006)
confirmed, through analytical considerations, that strong enough primordial fields
indeed enhance early star formation, but recently Marinacci et al. (2015), using ideal
magnetohydrodynamic cosmological numerical simulations, claimed that they on
the contrary lead to a suppression of the cosmic star formation efficiency. They
interpret this suppression as due to the additional pressure in gaseous structures
arising from the magnetic field, and we may also expect magnetic tension to have
a similar effect. An upper limit was also inferred based on the idea that strong
magnetic seeds in the early universe would leave imprints on the Cosmic Microwave
Background (CMB). A primordial magnetic field induces scalar, vector and tensor
perturbations in the metric, leading to both temperature anisotropies and polarization
signals. Precise calculations with comparison to CMB data (for example Shaw and
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Lewis 2012; Planck Collaboration 2015) give the typical limit B ≤ 10−9 G. Faraday
Rotation measurements towards distant quasars give the same upper limit assuming
a maximal field reversal scale of 1Mpc (Kronberg 1994).

Lower bounds. With only upper bounds, measurements are still compatible with
zero. Fortunately, a lower limit, and thus an evidence of non zero magnetic fields at
cosmological scales, was announced a few years ago. It was made possible through
high energy gamma-ray observations, with the space telescope Fermi and ground
based telescopeHESS (High Energy Spectroscopic System) data (Neronov andVovk
2010; Taylor et al. 2011; Takahashi et al. 2012). More precisely, gamma-rays with
energies of the order of, or greater than the TeV emitted by blazars interact with the
diffuse extragalactic background light (i.e. the radiation of extragalactic origin that
fills theUniverse, ofwhich theCMB), creating electron-positron pairs in intergalactic
space. These pairs interact via Inverse Compton scattering with CMB photons, and
Neronov and Vovk (2010) show that typical 5TeV electrons from blazars scatter typ-
ical 6 × 10−4 eV CMB photons at about 90GeV. Therefore a secondary cascade of
gamma-rays appears. In the presence of magnetic fields, the electrons and positrons
trajectories are altered, making the cascade emission signal to appear as extended
around the primary source. Thus the source size appears different from the point
spread function of the telescope if the magnetic field in the intergalactic medium is
non zero. What is more, the stronger the intergalactic magnetic field, the stronger
the damping of the high energy gamma ray flux measured in the telescope. Com-
bining both information, the authors of Neronov and Vovk (2010) were able to put
a lower limit on the strengths of fields at large scales: 10−17 G ≤ B over distances
of about 80Mpc. Note that this measurement was made only for three blazars in the
recent Universe (redshift z ∼ 0.18) because known blazars are rare. The objective is
therefore to have more and more measurements by using other sources (e.g. AGNs)
with the same method. We could thus obtain information on cosmological magnetic
fields in more directions, and even have an observational angular power spectrum of
cosmic magnetic fields i.e. on the whole sky.

Now, in addition to the gamma-ray telescopes, LOFAR (LOw Frequency ARray)
and SKA (Square Kilometre Array) are two radio-telescopes for which cosmic mag-
netism is one of the ‘Key Science Projects’, meaning that it is one of the main
motivations for which the instruments are built for. LOFAR is an interferometric
array of radio telescopes (10–240MHz) with more than 20,000 antennas distributed
mainly in the Netherlands but also across Europe, in countries including Germany,
France, theUK, and Sweden. It reaches a resolution equivalent to a 1000 kmdiameter
telescope. SKA will be a set of thousands of linked radio wave receptors (50MHz–
14GHz) located inAustralia and SouthAfrica. It is expected to be operational around
2020 (phase 1). It will reach a resolution equivalent to a larger than 3000km diam-
eter telescope. Finally, as we will see in the next section, seed magnetic fields were
generated on cosmological scales during the EoR. Although weak (of the order of
10−19 G) and very remote, the strengths of the seeds produced, together with their
specific spatial configuration, could actually also be revealed directly through the
recently proposed probe of magnetic fields in the EoR detailed by Venumadhav et al.
(2014), although large coherence lengths of the magnetic fields might be mandatory.
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As a result, even though they are far from new in human knowledge, magnetic
fields are becoming a new observable in Cosmology (they have been even proposed
as key ingredients for the detection and study of the cosmic web itself, see Vazza
et al. 2015) and it is timely to focus on the subject of their origin and cosmological
evolution. But interpreting these data remains very problematic and it is crucial to
know as precisely as possible where and how these fields may have appeared. On the
theoretical side this question has been tackled very early, with studies dating from the
late 1950s (Hoyle and Ireland 1960). Many different approaches have been proposed
as we will see right below. But despite all this work, their origin is still one of the
greatest question of modern Cosmology.

3.1.2 Brief Overview of Magnetogenesis Models in
Cosmology and Astrophysics

The possibility that the Universe has been born magnetized cannot be dismissed
a priori. But as an answer to the question of the origin of magnetic fields, it is a
somewhat unsatisfactory solution. So the question is still open: When and how did
they appear? The thing we know, as mentioned in the previous section, is that if they
had appeared with strengths of the order of what they have today, structure formation
history would have been totally different from what we observe. Hence the current
paradigm is that they are the result of the amplification of weak seeds by adiabatic
compression (since the fields are ‘frozen-in’) and dynamo effects during structure
formation, and were maintained by dynamos later on. The current consensus is that
seeds of only 10−22 to 10−12 G are required to reach the observed µG fields (e.g.
Widrow et al. 2012; Durrer andNeronov 2013). But when, where and howwere these
seeds generated? A plethora of models has been proposed, and since the constraints
are not very strongyet, it is difficult to excludemostmodelswhile, at the same time, no
model is entirely satisfactory. They are all problematic to some degree. Also, several
of these mechanisms most probably happened together. One important question is
thus to compare them and evaluate when and where one may have dominated over
the others.

It is usual to divide these numerous mechanisms into two broad classes, based
on the same distinction as in the chronology in Chap.1, namely Primordial Universe
mechanisms and Post-Recombination ones.

Primordial Universe The literature on primordial mechanisms is vast. For reviews
see e.g. Grasso and Rubinstein (2001), Widrow et al. (2012), Durrer and Neronov
(2013) and Subramanian (2016). These mechanisms can be divided in three classes.

(i) Inflation. A major idea of inflation is to interpret the current matter density
field of the Universe as stemming from quantum fluctuations of the primordial matter
fields. This mechanism is very successful at accounting for observations of the statis-
tical distributions of large scale cosmic structures (galaxies and galaxy clusters). It is
therefore tempting to follow the same idea and propose that current magnetic fields

http://dx.doi.org/10.1007/978-3-319-61881-4_1
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originate in quantumfluctuations of the primordial electromagnetic field. Indeed how
can magnetic fields be so wide-spread at such scales as suggested by the gamma-ray
telescopes? This is why looking at seeds generated during inflation is a seducing idea.
This approach has been considered and the result is puzzling: The fields generated
have extremely small strengths, far too small to account for what we see today. Only
mechanisms with physics beyond the Standard Model such as string theory or non
standard physics such as massive photons predict large enough magnetic strengths.
Unfortunately, globally the predicted seed strengths range from 10−65 to 10−9 G and
depend very strongly on the details of the models. Thus magnetic field generation
during inflation is far from generic. Note that the need to require new physics is
interesting since the detection of cosmological magnetic fields could then constitute
a new probe of exotic physics if other origins, as those mentioned below, are ruled
out.

(ii) Electroweak and Quark-Hadron phase transitions. If not generated as early
as in the inflation epoch, the fields may have been generated later in the primordial
Universe, throughmechanismsbasedon ratherwell establishedHighEnergyPhysics:
in the hot primordial plasma, the W and Z bosons and photons were interchangeable
until temperature decreased enough for these bosons to become distinct. The weak
and electromagnetic forces became then separate forces. This transition is called the
Electroweak phase transition. Another paramount transition occurred later on in the
cooling primordial plasma: initially the temperaturewas so high that quarks could not
form bound systems, but once the temperature decreased enough, quarks were able to
cluster into hadrons. This transition is called theQuark-Hadron phase transition. Both
phase transitions involved the release of huge amounts of energy and involved the
acceleration of charged particles, e.g. at the boundaries between true and false vacua.
Important currents and electromotive forces may then have appeared thus inducing
magnetic field seeds. Detailed calculations showed that indeed strong fields certainly
arose then, but only at horizon scales (the maximum distance a light ray could have
traveled since the Big Bang at that time) which were extremely small, making it
difficult for these fields to account for magnetic fields at present cosmological scales.
Those mechanisms are however not discarded, because of possible inverse turbulent
cascades. In (magneto)hydrodynamics, a (magnetic) direct ‘cascade’ is a process
which transfers (magnetic) energy from large scales to small scales. In the study of
cosmological magnetic fields, the inverse process is of great importance as many
mechanisms can generate magnetic fields on small scales. An inverse cascade may
then bring the generated fields to larger scales. Relying on magnetic helicity, in the
context of the primordial Universe, it is still unclear whether such processes may or
may not have been efficient enough.

(iii)Before and at Recombination. Towards the end of the radiation era, before and
at recombination, magnetic fields were also generated, via vorticity in the primordial
plasma. Harrison (1970) was the first to state this clearly. Electrons and protons in
rotating plasma blobs interact with the background radiation through Compton scat-
tering. However the cross section of this interaction is much larger for electrons than
for protons, so that a charge separation and thus an electric field, is induced. Because
the blob has a differential rotation, this electric field is rotational and thus induces a
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magnetic field in turn. Since then, many studies have refined the calculations, result-
ing in field strengths that are very weak compared to other mechanisms, namely of
up to B ∼ 5 × 10−24 G on Mpc scales at z = 1100 (Fenu et al. 2011; Saga et al.
2015).

Post-recombination For reviews including material on post-recombination mecha-
nisms, see e.g. Widrow (2002), Kulsrud and Zweibel (2008), Ryu et al. (2011), and
Widrow et al. (2012). In the post-recombination Universe, we can distinguish four
possibilities.

(i) Thermal (Biermann) battery. This mechanism relies on the fact that when
thermal pressure gradients are not aligned with electronic density gradients, electric
fields of non-zero curl appear, thus inducing magnetic fields by Faraday’s law (2.1).
More precisely, as described in Xu et al. (2008), the Biermann battery appears as a
source term in the induction equation (2.16). Namely neglecting the diffusion of the
magnetic field we have (we will derive this Biermann term in the next section)

∂t �B = �∇ ×
(
�v × �B

)
+ c �∇ pe × �∇ne

n2ee
, (3.1)

where ne is the electron density and pe the electron pressure linked to temperature
by the ideal gas law pe = nekBTe which is why this is also called a thermal bat-
tery. This mechanism was originally proposed by L. Biermann in 1950 to generate
magnetic fields in stars in which the misalignment of density and pressure gradients
of the electronic fluid stems from the differential rotation (Biermann 1950; Kemp
1982). This idea was later applied in the cosmological context in two ways. Firstly,
during structure formation motions are very turbulent, and shocks at cosmological
scales are ubiquitous (Ryu et al. 2003). Works like those of Pudritz and Silk (1989)
and Kulsrud et al. (1997) showed that seeds of strengths B ∼ 10−20 to 10−18 G on
protogalactic scales could thus emerge in the cosmic web. Secondly, magnetic fields
at cosmological scales have been generated through the Biermann battery during
the Epoch of Reionization (EoR), at the contact of ionization fronts from the first
luminous objects with matter overdensities. This was first investigated analytically
with simple estimates by Subramanian et al. (1994) and later numerically by Gnedin
et al. (2000). In the latter paper, the authors present two typical situations in which
temperature and density gradients are not aligned, cf. Fig. 3.2.

The first one, which occurs essentially in the first stages of EoR, comes from the
fact that as stars form in dense neutral clouds, pressure builds up and at some point the
hot and ionized gas breaks out from the protogalaxy. This break out does not occur
isotropically but rather in the way depicted in the left of Fig. 3.2. In the moderate
density regime (overdensity δ ≤ 10) temperature correlates with density, so that in
such neutral overdense regions, the temperature gradients are radial, like the density
gradient. But at the same time, the ionization front breaking out is by definition the
transition between a fully ionized and fully neutral medium, so that as highlighted
in the figure, the geometry of the situation is such that the electron density gradient
is on the contrary orthoradial. Therefore, the condition for the Biermann battery to
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Fig. 3.2 Two typical situations occurring during EoR in which temperature and density gradients
are misaligned, thus generatingmagnetic field through the Biermann battery, as presented in Gnedin
et al. (2000). Left The breakout of ionization fronts from protogalaxies. Right The propagation of
ionization fronts through high-density neutral clumps or filaments

operate is maximally efficient in this situation. The second situation, depicted on the
right of Fig. 3.2, corresponds to an ionized front passing through a neutral clump or
filament. This may occur all along the EoR, and even later, once ionized bubbles have
overlapped but neutral clumps remain because they are dense enough for recombi-
nations to counterbalance ionizations (recombination time decreases with density).
As before, temperature gradients are radial, but now electron density gradients are
horizontal (for a vertical ionization front as in the figure) so that both are misaligned
and a magnetic field is generated. The fields are generated on relatively large scales
but the strengths are of the same order as in the cosmological shocks mentioned
above. Some dynamo effect is thus required to amplify them.

(ii)Plasma instabilities. Plasma instabilities such as theWeibel instability (Weibel
1959) can create magnetic field seeds with high strengths, reaching for example
10−7 G, but only on small plasma scales. However, this process may occur in large
volumes, such as in galaxy cluster shocks (Schlickeiser and Shukla 2003; Medvedev
et al. 2006). It hence requires some inverse cascade to account for the coherence of
fields on large scales. Fields up to 10−16 G on kpc scales could arise in tens of Myrs,
provided fields on smaller scales do not saturate the instability (Ryu et al. 2011).

(iii)Momentum transfer from photons. The interaction of photonswithmattermay
induce magnetic fields through two processes, namely Thomson scattering and pho-
toionization. Given the mass dependence of the Thomson cross section σT ∝m−2,
electrons are more accelerated than protons by photons, thus inducing electric fields,
which acquire non-zero curl thanks to inhomogeneities or turbulence, thus inducing
magnetic fields. As mentioned previously, some explored the possibility that this
happened at Recombination, but resulting in strengths too weak to be a dominant
mechanism. At Reionization however, matter distribution is much more inhomoge-
neous, making it a promising period for the creation of seeds by momentum transfer
from photons to electrons. In protogalaxies, field of typically B ∼ 10−18 G on pro-
togalactic scales could be reached (Mishustin and Ruzmaı̌kin 1972; Langer et al.
(2003); Chuzhoy 2004). The role of photoionizations during EoR has been explored
around first stars by Silk and Langer (2006) and Shiromoto et al. (2014) for instance,
and in the whole intergalactic medium by Langer et al. (2005), Ando et al. (2010)
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and Durrive and Langer (2015), and the next section is dedicated to it. Note that Doi
and Susa (2011) examined the relative importance of this photoionization mecha-
nism and the Biermann battery in numerical simulations of the neighbourhood of
an ionizing super-massive star. In their study, they focus on the situation across an
ionization front, in which a self-shielded, neutral, δ � 102–103 over-density defines
very sharp and strong gradients in the temperature and electronic density fields. Such
a situation could indeed occur within Strömgren spheres of the very first luminous
sources. Under those conditions, they concluded that the Biermann battery domi-
nates by one order of magnitude. In Langer et al. (2005) and Durrive and Langer
(2015), mild, neutral over-densities way outside the Strömgren regions of stronger,
long-lived ionizing sources, are considered. In such contexts, the Biermann battery
may not be effective, be it for purely geometrical reasons, as argued in Durrive and
Langer (2015), and the major advantage of the photoionization mechanism is that
the whole intergalactic medium is premagnetized, i.e. magnetic seeds are generated
almost everywhere.

(iv)Outflows. So farwehavepresupposed that themagneticfields in the IGMtoday
have been generated in situ, while in fact a fraction of it may have been generated
inside structures and only then somehow reached less dense regions. As we have
seen in Chap.2, diffusion is absolutely inefficient in the cosmological context. A
possibly very efficient process however are outflows, i.e. they were expelled into the
IGM. We may distinguish three typical cases. Firstly, the most powerful outflows
one may think of are those from AGNs (Rees 1987; Daly and Loeb 1990; Ensslin
et al. 1997), cf. Fig. 3.3, but those sources are relatively rare, so that their efficiency
to globally magnetize the IGM is not necessarily great. Authors like Furlanetto and
Loeb (2001) have estimated that by z ∼ 3 some 5–20% of the IGMmay be ‘polluted’
by B ∼ 10−9 G with correlation lengths of the order of the radio lobe size, namely of
the Mpc. Secondly, galactic winds from galaxies inside clusters may also contribute.
Thiswas investigated for example byKronberg et al. (1999), Bertone et al. (2006) and
Donnert et al. (2009). They claim that magnetic fields of 10−12 to 10−8 G strengths
may have been spread in most of the IGM with correlation lengths of the order
of one kpc. However, such results strongly depend on the prescriptions of galactic
winds. This is one example of situations which underlines the importance of gaining
precision in the modeling of ‘small scale’ phenomena in order to better constrain
and understand what happens on larger scales. Thirdly, as far as galactic winds are
concerned, it is most natural to think of galaxies inside structures, but in the context
of cosmological magnetic fields, winds from void galaxies are well situated to be of
interest, as first pointed out by Beck et al. (2013). In this work, the authors consider
cosmic ray driven winds, through Bohm diffusion. The relevance of this choice of
diffusion process is still under debate in the community. They perform a simple
estimate for a typical void and conclude that fields of up to 10−15 G may be spread
in voids. But the authors themselves qualify their result as a ‘highly speculative’
estimate because of the crudeness of their assumptions. This idea deserves a more
thorough inspection, and authors like Ramond and Langer started digging further in
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Fig. 3.3 VLA image at 5GHz of the hyper-active radio galaxy Cygnus A (credit: NRAO/AUI and
R. Perley) showing jets that inject magnetized plasma, deposited in giant radio lobes, into the IGM.
Note that the jets extend over dozens of kpc here (Carilli and Barthel 1996), andmay reach distances
of the Mpc order in other AGNs

this direction by investigating rigorously the transport of plasma in expanding voids
due to the global expansion of the Universe in the general relativistic frame (Ramond
2015).

3.2 Intergalactic Magnetogenesis by Photoionization from
the First Luminous Sources

In 2005, an astrophysical mechanism generating intergalactic magnetic fields during
the EoR based on photoionization was introduced by Langer et al. (2005). I will now
present my contribution to this work: I explored in depth and in detail the physics of
the mechanism, notably by deriving the expression of the generated magnetic field
from first principles, and exhibited the characteristic length scales of the problem.

This mechanism is particularly interesting in the cosmological context because,
as we shall see, it naturally induces magnetic fields on large scales, because the
driver is high energy photons (UV and X) which have long mean free paths, and on
early stages of structure formation, namely as long as a significant fraction of the
IGM was neutral. This contrasts with mechanisms based on the Biermann battery
(cosmological shocks or propagating ionization fronts, cf. Sect. 3.1.2)which generate
fields essentially in high density environments.

In this section, I will summarize the ideas I proposed, the steps I followed and the
results I obtained. For the details of the calculations, I invite the reader to consult the
article Durrive and Langer (2015) that this work led to.
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3.2.1 Intuitively

The mechanism According to the Standard Model of Cosmology, the first stars,
galaxies and quasars formed in neutral pristine gas during the first billion years of the
history of the Universe. As they radiated, they photoionized their surroundings, and
formed around them fully ionized regions, called Strömgren spheres or Hii regions.
More precisely, the structure of these regions is the result of the competition between
ionization and recombination processes. The radius of a Strömgren sphere is defined
as the distance from the source at which the ionization and recombination rates are
equal. Within this distance, photoionizations dominate and the inside of the sphere
is considered as fully ionized. On the contrary, far from the source recombinations
dominate so that the medium remains essentially neutral. However, photoionizations
at the exterior of Strömgren spheres do occur. Indeed, the mean free path of photons
goes as the cube of their energy (λmfp ∝ ν3), so that UV and X photons travel,
and may photoionize, far beyond the Strömgren radius. The ionizations giving rise
to the Hii region itself are essentially achieved by photons with energies close to
the Hydrogen ionization threshold. Now, from Maxwell-Faraday equation ∂t �B =
−c �∇ × �E , we know that the requirement for a magnetic field to be generated is
the existence of a process that induces a rotational electric field, and as detailed
in Fig. 3.4, a clumpy intergalactic medium and anisotropic Strömgren spheres are
sufficient to fulfill this requirement. In realistic configurations, this lack of symmetry
in the IGM and Strömgren spheres is evident, as we can see for example in the results
of numerical simulations Fig. 1.4, so that magnetic fields must have been generated
by this mechanism.

Amechanism of cosmological interest This mechanism is relevant for Cosmology
obviously because it takes place during the remote times of first star formation, but
also because it generates fields on cosmological scales. Indeed, the driving process is
photoionization, so that an obvious length scale of the problem is the mean free path
of photons, which depends on their energy but also on the density of the medium
in which photons propagate, and thus on the epoch at which they where emitted.
Table3.1 shows orders of magnitude of these values in the relevant ranges of redshift
and for typical values of energy of the emitted photons. These values are indeed of
cosmological interest and, as shown in the article Durrive and Langer (2015), are
of the same order of magnitude as the intersource distance of the sources that emit
them. In other words, this mechanism can potentially magnetize the whole IGM all
along the Epoch of Reionization.

What is more, as explained in Fig. 3.4, the heart of the mechanism is that inhomo-
geneities in the IGM and the anisotropy of Strömgren spheres make the absorption
along adjacent lines of sight different, yielding the required curl in the electric field
generated by photoionizations. The key point is that if at some distance from the
source adjacent lines of sight are differentiated, then, in the vast majority of cases,
they will remain as such and thus magnetic field will be generated at this point and all
the way beyond it. This is the reason why, as we will see in the precise calculations

http://dx.doi.org/10.1007/978-3-319-61881-4_1
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Table 3.1 Orders of magnitude of mean free paths �ν ≡ (n̄σν)−1 (where n̄(z) is the mean gas
density of the Universe at redshift z and σν is the photoionization cross section) of photons of
frequency ν = ν0, 4ν0 and 10ν0 at various redshifts during the EoR. These frequencies correspond
respectively to the ionization threshold and two typical frequencies of the sources present at EoR,
cf. article Durrive and Langer (2015) for more details

z �ν0 (kpc) �4ν0 (kpc) �10ν0 (kpc)

30 0.0073 0.47 7.3

15 0.053 3.4 53

10 0.16 11 160

6 0.64 41 640

below, the magnetized areas generated look like shadows behind inhomogeneities.
This mechanism thus naturally generates fields on large scales.

Finally, this mechanism is interesting for Cosmology because it occurs so early in
the history of the Universe, when the first sources are only forming. This may impact
the subsequent formation of the following generation of stars, which then form in
pre-magnetized regions. It is thus important to assess in full detail the strength of the
fields generated by this mechanism, which is the purpose of the following.

3.2.2 Formally

We are now going to model a source, emitting photons radially, which is surrounded
by the IGM, a multicomponent plasma. Throughout this chapter and the next one,
the usual spherical coordinates (r, θ,ϕ) will be used, the source being at the origin.

Procedure Formally speaking, the idea to model this mechanism is to think back
at what the photoionization process consist in. Consider a volume element crossed
through by photons emitted by a source. Some photoionizations occur, which not
only increase the number of free electrons in the volume element, but free themwith a
velocity that depends on the energyof the incident photon. Therefore, photoionization
modifies both the number density and the velocity distribution of electrons in the vol-
ume element. Fundamentally this process therefore requires to be modeled through
a kinetic description of the plasma and of the radiation field. However, Maxwell’s
equations (2.1) governing the electromagnetic field aremacroscopic. Therefore, once
we have modeled photoionization at the kinetic level, our task will be to reduce the
description to a macroscopic one, as presented in Chap. 2. But which are the macro-
scopic quantities we need to compute? Our aim is to compute the magnetic field.
To do so, we need to find the equation governing it, which is called the induction
equation, and as we will see the induction equation can be obtained by taking the curl
of the equation governing the current density �J in the plasma, which is the Ohm’s
law.

http://dx.doi.org/10.1007/978-3-319-61881-4_2
http://dx.doi.org/10.1007/978-3-319-61881-4_2
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Fig. 3.4 Illustration of themechanism. Left A luminous source emits photons beyond its Strömgren
sphere (white area) into the surrounding globally neutral IGM (gray area). The continuous arrow
starting from the edge of the Strömgren sphere to the upper left corner of the figure represents a given
line of sight. All along this line of sight, photoionizations occur, one of which is represented in the
picture. Each of these photoionizations induces a charge separation which gives rise to an electric
field. Because these photoionizations occur continuously and steadily, the electric field is sustained.
Now, if the IGM is perfectly homogeneous and the Strömgren sphere spherically symmetric, then all
the lines of sight would be equivalent, and the resulting electric field would be curl-free. However,
if an overdense region is present in the IGM, it differentiates adjacent lines of sight because the
absorption along each of them differs. The electric field then has a non vanishing curl and amagnetic
field thus emerges. This is schematically represented in the figure by a second line of sight half
continuous half dashed, along which the photoionizations induce an electric field locally equal to
�E ′ different from the value �E of its neighboring volume elements. Right A second configuration
favorable to the generation of intergalacticmagnetic fields by photoionization iswhen the Strömgren
sphere is anisotropic, even in a homogeneous IGM, because again the key is to differentiate lines
of sight. Note that the field is thus naturally generated on large scales, since once two lines of sight
differ, they remain different as we keep moving away from the source

We will thus proceed as follows: From a kinetic description of the IGM and of the
radiation field emitted by the source, we will derive Ohm’s law, the curl of which will
lead us to the induction equation (3.15) below. This relation contains an additional
term compared to the one usually presented and manipulated in the Cosmology
literature, namely the term due to photoionizations. For clarity, let me decompose
this derivation in four steps.

Step 1: Describing the fieldsLet us adopt a kinetic description of the fields involved.
The radiation field of astrophysical ionizing sources is usually described in terms

of the specific spectral density Iν , which corresponds to the distribution function
of photons, with the information on the norm of the momentum given by ν and its
direction by the unit vector k̂ ≡ �k/k. For details on the definition of this quantity, see
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for example Shu (1991) or Rybicki and Lightman (1986). In principle, one should
solve the complete radiative transfer equation governing the evolution of Iν to get an
explicit expression of it, but for our purpose, it is sufficient to consider the following
solution to this equation (Shu 1991):

Iν(t, �r , k̂) = Lν
e−τν

4πr2
δ(k̂ − r̂), (3.2)

where Lν is the spectral luminosity density of the source, r̂ is the radial unit vector,
nHi the Hydrogen density and

τν = σν

∫ r

0
nHidr (3.3)

is the optical depth with σν the photoionization cross section. The δ(k̂ − r̂) fac-
tor accounts for the fact that the source emits radially and 1

4πr2 corresponds to the
geometric dilution.

The matter fields relevant here are those composing the IGM. Cosmological
recombination was an incomplete process: during the Dark Ages, a tiny non zero
ionization fraction remained in the IGM. The free electrons and ions from this plasma
are usually called residual electrons and residual ions. In addition to them, photoion-
izations liberate new electrons and ions. In the article Durrive and Langer (2015),
we thus consider five different species composing the IGM, namely:

α =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 : residual electrons;
2 : residual ions;
3 : photoionization electrons;
4 : photoionization ions;
5 : neutrals.

Each of these matter fields is characterized by its distribution function fα. Each fα
is governed by the following generalized Vlasov equation:

d fα
dt

= ∂t fα|c + ∂t fα|s . (3.4)

This is Eq. (2.8) presented in Chap.2, where now I have decomposed the source term
of the right hand side in two parts: the first term corresponds to collisions and the
second is the source term due to photoionizations that we are going to explicit in
expression (3.13) below. This is in essence the most important equation because this
is where the photoionization process is modeled.

http://dx.doi.org/10.1007/978-3-319-61881-4_2
http://dx.doi.org/10.1007/978-3-319-61881-4_2
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Step 2: Ohm’s law In terms of the quantities defined in the multifluid description
of Sect. 2.2, the total current density is simply the sum of the current density of all
species, i.e. �J = � �Jα where �Jα = qαnα

�Vα. Now since we are delving back into the
kinetic description here, this should be rewritten as

�J =
∑

α

qα

∫
�v fαd

3�v. (3.5)

Therefore, we see that it is by taking the first moment of (3.4) weighted by qα, and
summing over all species that we may get the equation governing �J . This yields the
following generalized Ohm’s law:

∂t �J +
( �V . �∇

) �J +
( �∇ · �J

) �V − �V �V · �∇ρ

= �α
q2

αnα

mα

( �E + �Vα× �B
c

)
− �P + �C + �α

qα

mα
�̇pα

︸ ︷︷ ︸
momentum
transfer

(3.6)

where the important quantity for the present discussion is the last term, given by

�̇pα ≡
∫

mα�v ∂t fα|s d3�v, (3.7)

which corresponds to the momentum transfer from photons to species α. There is no
need to explicit the expressions of the pressure term �P and the collision term �C for
the present discussion. They can be found in the article Durrive and Langer (2015).

Now, given thatwe are looking for fields that are initially vanishing andwill remain
small, we may linearize the full Eq. (3.6). Then, in the article Durrive and Langer
(2015), we justify in detail, estimating each term with orders of magnitude, that
given the cosmological length scales and timescales of interest (tens of kpc and tens
of Myrs), a certain number of terms may be neglected, so that the relevant expression
of the above generalized Ohm’s law for our purpose is the simple expression

�0 = −qne �E − �∇ pe + �̇ppe
where �̇ppe =

∫
me�v ∂t fpe

∣∣
s d

3�v
(3.8)

(Simplified Ohm’s Law)

where ‘pe’ stands for photoionization electrons. Note that delving into this amount
of detail in the modeling is not only a way of deriving rigorously the term due
to photoionization in the induction equation, but is also the opportunity to reveal
interesting subtleties. For instance, as detailed in the article Durrive and Langer
(2015), ne in (3.8) is the total number density of electrons, while the source term �̇ppe
is due to the newly freed electrons from photoionization only, and the pressure term

http://dx.doi.org/10.1007/978-3-319-61881-4_2
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is due to residual electrons only. Also, we may now interpret the source term �̇ppe
naturally as follows: ∂t fpe

∣∣
s d

3�v d3�r dt is the number of photoelectrons generated in

a volume element d3�r during dt , appearing with momentum me�v. Thus �̇ppe d3�r dt
represents the total electron momentum appearing in a volume d3�r during dt , so
that �̇ppe is a momentum density generation rate. While Eq. (3.6) has been correctly
described many times as a close analogue to Newton’s second law, we can see
here, however, that the term �̇ppe is not, in essence, a force density, but a source
of momentum.

Step 3: The source term �̇ppe We still have to explicit this source term as a function
of the parameters of the problem. Microscopically, a fraction fmt of the momentum
of the incident photon is transferred to the freed electron during photoionization,
which may be rewritten as

me�v = fmt(ν)
hν

c
r̂ , (3.9)

where fmt is frequency dependent, given by Sommerfeld and Schur (1930):

fmt(ν) = 8

5

ν − ν0

ν
, (3.10)

for ν > ν0. Note that this fraction may be larger than one, in which case the ions
recoil.
Now, by definition ∂t fe|s d3�vd3�rdt is equal to the number of photoelectrons of speed
v in direction v̂ generated at a position �r at a time t . Sincewe consider Hydrogen only,
each photoionization produces only one electron. This number is thus equal to the
number of photoionizations due to photons of frequency ν in direction k̂ = v̂ where
ν satisfies (3.9). Finally, consider a simple projectile-target model, in which particles
of type A, with density nA and velocity vA, are incident on particles of type B at rest
with density nB . The cross section of the interaction bewteen A and B particles is σ.
Then the number of reactions per unit time and unit volume is given by nAvAnBσ. In
that spirit, we have that the photoionization rate density is the product of the number
density of incident photons, the velocity of incident photons, the number density of
target Hydrogen atoms and the cross section, so that

∂t fe|s d3�vd3�rdt = [
nincγ dνd�

]
cσνnHid

3�rdt (3.11)

where the number density of incident photons of frequency ν with direction k̂ at �r
at time t is

nincγ (t, �r , k̂, ν) = Iν/c

hν
(3.12)
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by definition of the monochromatic specific intensity. Therefore wemodel the source
term in the expression (3.8) by

∂t fe|s d3�v = Iνσν

hν
nHidνd�. (3.13)

This relation describes the photoionization process at themicroscopic level. Plugging
it, together with (3.9), into the expression of �̇ppe in (3.8), we obtain

�̇ppe = nHi
c

∫ ∞

ν0

fmt(ν)σνLν
e−τν

4πr2
dν r̂ (3.14)

(Macroscopic Source Term)

where ν0 is the Hydrogen ionization threshold.

Step 4: Induction equation and Generated Field The induction equation is then
given by the curl of (3.8) with expression (3.14), andmay be written, using Faraday’s
law, as

∂t �B = −c

e

�∇ne
n2e

× �∇ pe
︸ ︷︷ ︸

Biermann

+ c

ene

[ �∇ne
ne

× �̇ppe − �∇ × �̇ppe
]

︸ ︷︷ ︸
Photoionization

. (3.15)

(Induction Equation)

The first term on the right hand side is the usual Biermann battery term present in the
induction equation (3.1), and the two additional terms are due to photoionization.
The Biermann term will be discussed in the next section and will not be considered
here otherwise. Then integrating (3.15), the magnetic field at time t and position �r
may be written as a sum of two contributions:

�B(t, �r) = �Blocal + �Bglobal (3.16)

(Generated Magnetic Field)

where the ‘local’ term is

�Blocal =
∫ t

0
F int
local

�Fgeom
local dt (3.17)

F int
local = 1

qx2e

1

4πr2

∫ ∞

ν0

fmtσνLνe
−τνdν (3.18)

�Fgeom
local = �∇xe × r̂ (3.19)
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and the ‘global’ (because it contains an integration over space) term

�Bglobal =
∫ t

0
F int
global

�Fgeom
global dt (3.20)

F int
global = 1

qxe

1

4πr2

∫ ∞

ν0

fmtσ
2
νLνe

−τνdν (3.21)

�Fgeom
global = �∇

(∫ r

rs

nHidr

)
× r̂ . (3.22)

where xe = ne
nHi

is the total electron fraction.

Formally, �Blocal and �Bglobal are both products of two terms, integrated over time:
an ‘interaction’ term F int and a ‘geometric’ term �Fgeom. The interaction term char-
acterizes the impact of the source at a time t and a position �r , as it includes the
absorption, geometric dilution, the photoionization cross section and the fraction of
momentum transferred from photons to electrons. The geometric term however is
independent of the properties of the ionizing source and dictates how favorable the
spatial configuration of the IGM is for the generation of magnetic field.

Indeed, the �Fgeom
global term is precisely the formal expression of the requirement we

have been intuiting in Fig. 3.4: the cross product shows that what matters are the
non radial gradients (i.e. differences between lines of sight) of the column density∫
nHidr (this corresponds to the situation on the left of Fig. 3.4) or the anisotropy of

the Strömgren sphere, because the lower boundary of the integral is rs , which gives
rise to a non zero term when rs has an angular dependence (when the configuration is
spherically symmetric, nHi and rs are functions of r only, so the gradient in �Fgeom

global is
purely radial and thus vanishes due to the cross product). Also, the integration over
space translates the fact that if at some distance two adjacent lines of sight differ,
they will in general remain different further away from the source. For this reason
the global term generates magnetic fields on large distances. Therefore, behind an
inhomogeneity, some magnetic field is generated from this global term even if the
medium is homogeneous there, and is only attenuated by geometric flux dilution,
absorption and the 1/r factor from the gradient.

We will consider a homogeneous Reionization scenario and suppose that the
ionization contrast vanishes, meaning that the ionization fraction xe is uniform, so
that �∇xe will be neglected in the following analysis, and we will focus on the �Bglobal

term.

3.2.3 Exploring �Bglobal

Let us now explore in detail the term �Bglobal. More precisely, in this section and the
next chapter, we will focus, by considering spherically symmetric Strömgren spheres
by taking rs = constant, on the contribution in the ‘global’ term of inhomogeneity
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in the Hydrogen density (nHi(�r)) due to the clumpiness of the Intergalactic medium.
The contribution of the anisotropy of the Strömgren sphere (rs(�r)) is something that
I am still currently exploring through a numerical approach, and its discussion is
deferred to Chap.5. Like in the previous section, I will here summarize the ideas,
steps and results of my work. For the details of the calculations, see Durrive and
Langer (2015).

Gaussian inhomogeneities The general expression (3.20) is valid for any density
distribution nHi, and needless to say that, even by considering rs as a constant,
revealing the characteristic length scales of the transverse part of the gradient of
the integral along the line of sight of a general density field is definitely not obvious.
Therefore, in order to understand what are the relevant length scales of the problem,
I have considered a simple density profile of expression

nHi(�r) = n̄

(
1 + δ0 exp

(
− (�r − �D)2

2σ2

))
, (3.23)

i.e. a homogeneous background containing aGaussian inhomogeneity of widthσ and
height δ0, centered at position �D from the source. The advantage of such a profile is
that it constitutes a simple but non trivial model, in the sense that it is characterized by
three simple scales (D, σ and δ0) and significantly eases calculations, giving access
to closed analytical forms, but at the same time it does not present singularities or
discontinuities like a top hat profile does at its edge or a profile with a central cusp.
Expression (3.23) thus constitutes an interesting toy model which brings to light
the essence of the mechanism at once and awakens our intuition for more realistic
configurations.

Identifying the areas of interest As we have seen, the total expression (3.20) is
the product of two contributions, the interaction term and the geometric term. As
illustrated in Fig. 3.5, I have analyzed themseparately, by determining their respective
characteristic zones.

(i) The interaction term (left panel of Fig. 3.5) expresses the following. Photons
emitted by the source first travel through the Strömgren sphere, in which they have
a very low probability of interacting. On the contrary, starting from the edge of the
sphere, photons of frequency ν have amean free path noted �ν due to their interaction
with the IGM. The most energetic photons of the source, of frequency noted ν1, are
those which may travel furthest. It is thus natural that the magnetic field generation
by this mechanism is drastically reduced beyond the distance rs + �ν1 , since few
photons reach that far. In the next chapter, I will call the ‘interaction zone’ this shell,
of thickness �ν1 , around the Strömgren sphere in which the interactions between the
source and the IGM is significant.

(ii) The geometric term (middle panel of Fig. 3.5) is independent of the source,
and delimits the area in which the density distribution fulfills the requirement for
the electric field to be rotational due to the shape of the inhomogeneity. For the

http://dx.doi.org/10.1007/978-3-319-61881-4_5
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Fig. 3.5 Left panel Magnetic fields may be generated significantly only through inhomogeneities
that are ‘close enough’ to the source for the number of photoionizations to be large enough.Middle
panelMagnetic fields may be generated significantly only where the gradients in the inhomogeneity
are large enough and adequately oriented with respect to the direction of incident photons for the
overall electric field to be rotational. Right Magnetic fields are generated in areas in which the
constraints described in the left and middle panels are obeyed simultaneously. Hatching indicates
regions where the strengths are weakest. See the article Durrive and Langer (2015) for details

Gaussian profile (3.23) ofwidthσ and at distance D, themagnetic field is significantly
generated only inside the cone2 of aperture angle

θlim = arcsin

(
3
√
3

2

σ

D

)
(3.24)

and that the highest values are reached close3 to the central region of the inhomo-
geneity (area ‘inside’ in Fig. 3.5) with a powerlaw decrease behind that region (area
‘behind’ in Fig. 3.5).

These results are very interesting because they enable us to summarize very simply
and grasp the properties of the distribution of the fields generated, while they are in
essence very complex, given the full Eq. (3.20). And indeed, this will be the key to
computing analytically the statistical properties of such generated fields in Chap. 4,
since these simple areas will be the only information we will keep to obtain efficient
estimates.

Numerical applications in the Cosmological context We now have a good grasp
of the spatial distribution of the magnetic field corresponding to formula (3.20), but
what are the typical numerical values of the strengths resulting from it? We know
that the Epoch of Reionization is a very complex era, in which many complicated
processes occurred simultaneously, so that to this day there is no simple model which
would provide us with the spectrum, the power and the distribution of the various

2Recall that the illustrations of Fig. 3.5 are axially symmetric about the vertical axis joining the
center of the source and the center of the inhomogeneity.
3At radius r = D and angle θmax = arcsin

(
σ
D

)
.

http://dx.doi.org/10.1007/978-3-319-61881-4_4
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sources present in the Universe during this era, as a function of redshift. Therefore,
in the same spirit as with the Gaussian profile above, we are going to consider a very
simple model of EoR to explore the range of values reached for | �B| through this
mechanism, and though simple, it will be very enlightening.

Based on our understanding of the EoRbriefly presented in Sect. 1.2, let us decom-
pose this epoch into three stages, considering that in each of these redshift ranges a
particular type of source dominates, namely

(i) 30 < z < 20: Clusters of Population III stars (clusters of ‘first stars’),
(ii) 20 < z < 10: Clusters of Population II stars (‘first galaxies’),
(iii) 10 < z < 6: Quasars.

The z > 30 epoch corresponds to Dark Ages in which no luminous source is formed
yet, and for redshifts below 6 the Universe is fully ionized so that our mechanism
ceases to operate. These three types of sources are modeled by powerlaw spectra,
i.e. their monochromatic luminosity is of the form

Lν = L0

(
ν

ν0

)α

for ν0 ≤ ν ≤ ν1, (3.25)

and they differ by their value of the spectral indexα, the cut-off frequency ν1, and the
normalization L0 which accounts for the intrinsic power of the source. Population
III star clusters have a very flat spectrum with a cut-off frequency such that they
emit only up to UV photons, and they are not very powerful sources. Quasars on the
contrary, emit high energy photons (UV and X) and are very powerful. First galaxies
are intermediate sources with respect to these two extreme cases. One should keep
in mind that the spectra at these epochs are still rather poorly constrained, but the
values chosen here (see Durrive and Langer (2015)) should be typical, and also
the tendencies revealed below remain valid independently of the precise numerical
values.

As detailed in Durrive and Langer (2015), I have performed numerical applica-
tions in which I made the various parameters entering the problem vary, namely the
properties of the inhomogeneity (position D, height δ0 and width σ) with various
types of sources (spectral index α, intrinsic power L0, and cut-off frequency ν1) at
various epochs (redshift z). The take home messages are the following.

• Typical strengths are summarized in Table3.2. Naïvely, one would expect the
strength of the generated field to be all the more important that the source is
powerful, because it then emits more photons, inducing more photoionizations in
the IGM. But one should not forget that the more powerful the source, the larger its
Strömgren radius, so that photons are all the more diluted before reaching the IGM
and photoionizing it. For this reason, sources which generate the magnetic fields
with the largest strengths on the largest distances are intermediate sources, which
constitute a compromise between photoionizing power and geometric dilution. In
this simple Reionization model, first stars generate large strengths but on small
scales (i.e. close to their Strömgren spheres),while quasars generate small strengths
but on large scales. First galaxies constitute the aforementioned compromise.

http://dx.doi.org/10.1007/978-3-319-61881-4_1
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Table 3.2 Typical values obtained through this mechanism in a cosmologically relevant numerical
application. The first column corresponds to the various types of sources considered to be dominant
at the epochs denoted in the second column. The third column shows the typical strengths of the
magnetic fields generated at the distances away from the Strömgren sphere shown in the fourth
column. These strengths and distances correspond to the typical values obtained by varying the
different properties of the inhomogeneities

Source Redshift Log |B| (Gauss) Distance from the
ionization front (kpc)

Pop III 30 −19 0.3

−21 1

20 −19 0.5

−21 1

Primordial galaxy 20 −20 10

−22 15

10 −21 30

−22 100

Quasar 10 −21 300

−22 1000

6 −22 500

−23 1500

• An additional ingredient has to be taken into account: the environment, i.e. the
density of the IGM at the epoch at which the sources evolve, and the abundance
of such sources (mean intersource distance). In that respect too, first galaxies con-
stitute an interesting balance. Indeed, first stars appear early (high redshifts), so
that they evolve in a dense IGM which is mostly neutral. This favors photoioniza-
tions and thus magnetic field generation, but because they are not very powerful,
the distances they can magnetize are small compared to their typical intersource
distance so that they magnetize only a small fraction of the IGM. Quasars on the
contrary, magnetize distances comparable or greater than their mean intersource
distance, despite their scarcity, but since they appear towards the end of Reioniza-
tion, the Hydrogen density is lowered by the global expansion and the IGM has
already been partly ionized by the preexisting sources so that their environment
prevents them from generating magnetic fields optimally. In that sense, first galax-
ies, which appear at an intermediate epoch and magnetize distances of the order
of their separation, constitute another interesting compromise.

• Magnetic fields of higher strengths and on larger distances are generated in under-
dense regions. Indeed, the same process occurs in underdense regions as in over-
dense ones because what matters to make the electric field rotational are density
gradients, but in voids photons have longer mean free paths since they are less
absorbed, and thus more photoionizations occur further from the sources. Void
regions extend the ‘interaction zone’ of the sources.
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• In the absolute, the numerical values of Table3.2 may seem unreasonably small.
But as we have seen in Sect. 3.1.2, these values are typical of magnetogenesis
models of the cosmological context. Among the numerous magnetogenesis mech-
anisms of cosmological interest, the relevant one to directly compare the present
mechanismwith, is the Biermann battery. Indeed, they operate at the same epochs,
and often in the same places simultaneously, as one can see in formula (3.15). We
must therefore assess when and where one mechanism dominates the other. Their
careful comparison was beyond the scope of the paper I am reviewing here, but at
the end of the articlewe put forward arguments advocating that while theBiermann
term is most certainly dominant close to the Strömgren sphere, the photoioniza-
tion mechanism should dominate far from the source where the temperature is low
and has large gradients. This particularity is precisely what makes this mechanism
interesting when it comes to generating magnetic fields on large cosmological
scales.
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Chapter 4
Magnetogenesis Throughout the Epoch
of Reionization

Themechanism detailed in the previous chapter operates around any source all along
the Epoch of Reionization. So far we have computed the magnetic field generated
around individual sources. Now, in order to evaluate the cosmological importance of
this mechanism, we need to estimate the level at which the Universe is magnetized
by this process. This naturally depends on the distribution of sources (the typical
separation distance of their Strömgren spheres), their spectral properties, the epochs
at which they appear and the distribution of inhomogeneities in the IGM. This is a
work I am leading, in collaboration with M. Langer, H. Tashiro (Nagoya, Japan) and
N. Sugiyama (Nagoya, Japan), with the provisional title ‘Mean Energy Density of
Photogenerated Magnetic Fields During EoR’ (Durrive et al. 2017).

4.1 Procedure

There are many ways of evaluating the level to which the Universe is magnetized
by a given mechanism. Here, we are going to derive what is probably the simplest
criterion, namely we are going to estimate the mean magnetic energy density injected
in the IGM by all the sources radiating during the Epoch of Reionization, with a
simple model. However, we will see that even this simple approach already turns out
to be involved due to the important number of elements one has to take into account.
This will thus be a very good and necessary starting point for deeper explorations,
as for example that mentioned in Chap. 5.

ProcedureAs presented in the previous chapter, magnetic fields are generated inside
and around overdense clouds in the IGM, but as we have seen, the exact formula
derived for �B is quite complicated. The key point is that we have however also iden-
tified the characteristic length scales of the problem, and we are thus able to model
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simply the magnetized area around a given overdensity. The second key element
is that from the Standard Model of Cosmology, we have tools to estimate the sta-
tistical distribution of sources and overdensities in the Universe. Then, combining
both informations, we may estimate the magnetic field generated by photoionization
during the EoR.

More precisely, as illustrated in Fig. 4.1, using the so-called Press-Schechter for-
malism, we may compute analytically the mean comoving number density of DM
halos of a given mass at a given redshift. And as we know, baryonic matter falls
into the potential wells of DM, so that DM halos host baryons, both sources (stars,
galaxies and quasars) and clouds (slightly overdense regions, making up the clumpi-
ness of the IGM). We are thus going to distinguish between two types of DM halos:
Baryons in ‘large enough’ mass DM halos have collapsed into luminous sources,
while ‘small enough’ mass DM halos contain diffuse baryons constituting slightly
overdense clouds. This way, we will have an estimate of the distribution of sources,
and of the distribution of clouds around each source, all along the EoR.

We will thus proceed as follows: First, in Sect. 4.2, we will model the magnetic
field generated around one source, due to the presence of one cloud and then due to
the presence of a distribution of clouds around it; then in Sect. 4.3 we will estimate
the global field generated by a distribution of such sources surrounded by clouds.

Fig. 4.1 Illustration of themagnetic field generation during EoR. The dark gray spots are overdense
clouds in the neutral IGM (the light gray region) close to sources of ionizing photons (the orange
spots). The white regions represent the Strömgren sphere (r ≤ rs ). Left panel We may summarize
the results of the thorough analysis of Chap.3 as follows: Only clouds between rs and rs + �ν1 (the
orange dashed line, delimiting the ‘interaction zone’) contribute significantly to the magnetic field
generation, and the fields are generated inside the blue frames with strengths well approximated
by formula (4.1). Right panel All along the EoR this mechanism operates around each source. The
aim of this chapter is to compute the mean magnetic field generated by a distribution of sources,
themselves surrounded by distribution of clouds as illustrated here

http://dx.doi.org/10.1007/978-3-319-61881-4_3
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4.2 Around One Source

4.2.1 One Cloud

A concise expression for B In the previous chapter, we have explored the spatial
distribution and typical numerical values of the magnetic field given by the very
general formula (3.20). Even for a simple Gaussian inhomogeneity, these quantities
are given by rather involved expressions, but we have extracted from them the gist of
information necessary for our purpose here by identifying the typical areas in which
the field strength is significant. As illustrated on the left of Fig. 4.1, we are now going
to keep only the following information: (i) Magnetic fields may be generated only
by the clouds that are close enough to the source, i.e. that are within the ‘interaction
zone’ defined as the shell of thickness �ν1 around the Strömgren sphere, where �ν1 is
the mean free path of the energetic photons emitted by the source (of frequency ν1),
and (ii) around a given cloud, characterized by (δ0,σ) (cf. Eq. (3.23)), at distance D
from the source, some magnetic field is generated in the volume delimited by the
blue frame in Fig. 4.1. More precisely, the magnetic field strength generated is well
approximated by the following profile

Bσ,δ0,D(r, θ,ϕ) = Bmax

( r

D

)−3
(
r − rs + √

2π/e δ0σ

D − rs + √
2π/e δ0σ

) α−5
3

(4.1)

where Bmax is defined below. This expression should be multiplied by the following
Heaviside step functions

�(r − D)�(r − rs)�(θlim − θ)�(D + f �ν1 − r) (4.2)

to delimit the region in which B is considered as non-negligible, corresponding
to the blue frame surrounding each cloud in Fig. 4.1. Thus the field is azimuthally
symmetric since there is no dependence on the angle ϕ, but only θ, where the angle
θlim is given by Eq. (3.24). For r < D the field is equal to zero, then at r = D it
reaches its maximum

Bmax = t∗
1

15

√
2

πe

σ2
0L0ν0

qxeD2
nHIδ0F(D,σ), (4.3)

where t∗ is the lifetime of the hard photon emitting phase of the source, set to t∗ =
100 Myr in our model, and F(D,σ) is the coefficient representing the geometrical
effects of the cloud

F(D, σ) = �

(
5 − α

3

) (
D − rs + √

π/2e δ0σ

�ν0

)(α−5)/3

− �

(
6 − α

3

) (
D − rs + √

π/2e δ0σ

�ν0

)(α−6)/3

.

(4.4)
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For r > D the strength decays as a powerlaw, where we introduce a cut-off distance
f �ν1 , after which the field will be considered as negligible. The role of the factor f
is to let us control this cut-off, measuring it in units of the relevant scale �ν1 . We will
discuss it further in the next chapter.

Energy generated due to one cloud The magnetic energy generated in the IMG due
to one cloud is the sum of the magnetic energy density B2

8π (Gaussian units) over the
whole volume in which the field is generated, that is

Eσ,δ0(D) =
∫ θlim

0
dθ sin θ

∫ 2π

0
dϕ

∫ D+ f �ν1

D
dr r2

B2
σ,δ0,D

8π
(4.5)

(Energy Generated by One Source surrounded by One Cloud)

where Bσ,δ0,D is given by (4.1).

4.2.2 Distribution of Clouds

Around one source, a distribution of clouds is present, each of them generating a field
given by (4.5). As illustrated on the right of Fig. 4.1, let us consider a source contained
in a DM host of mass M , and characterize the distribution of clouds surrounding it
by the mass m of their underlying dark matter halos. As suggested by the notations,
we consider the mass M to be larger than the masses m, since the baryons in the
DM halos of mass m are supposed not to have collapsed, while a luminous source is
already formed in the host of mass M . Note also that to help avoiding confusion we
call ‘host’ the DM overdensity of mass M which hosts the source, and ‘halos’ the
DM overdensities of mass m containing the clouds.

By definition of the correlation function (Peebles 1980), the probability of finding
a DM halo of mass m within a spherical shell of volume 4πD2dD, at a distance D
from a host of mass M is given by

d2P(D,m|M) = dnm
dm

(1 + bh(M)bc(m)ζ(D)) 4πD2dD dm, (4.6)

where dnm/dm is the mass function of halos. Its expression is given by the Press-
Schechter formalism (Mo et al. 2010, see also Press and Schechter 1974). The func-
tion ζ is the linear matter density correlation function, and two bias parameters,
bh(M) and bc(m), are introduced, respectively for the host of mass M and the halo
of mass m, to represent the enhancement of these overdensity peaks with respect to
the background mass overdensity (cf. Mo et al. 2010, for instance).

Clouds contained in halos of mass m induce the generation of a magnetic energy
Em(D) in the IGM, as discussed in the above section, and are distributed around
hosts of mass M according to (4.6). Summing up the contributions of all the clouds
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surrounding the source contained in the host of mass M , we may say that a source
generates a magnetic energy

EM =
∫ rs+�ν1

rs

∫ mmax

mmin

Em(D) d2P(D,m|M) . (4.7)

(Energy Generated by One Source surrounded by a Distribution of Clouds)

The boundaries of the first integral express the fact that only the clouds inside the
‘interaction zone’ (cf. Fig. 4.1) generate significant magnetic fields. Let us now dis-
cuss the boundaries of the second integral, namely mmin and mmax.

A troublesome degeneracy? In expression (4.5) the cloud is characterized by the
couple of parameters (σ, δ0), representing its characteristic size and central overden-
sity, because these are the two key parameters entering the magnetogenesis mech-
anism under consideration. Now, in this chapter we are aiming at computing the
mean field generated by a typical cosmological distribution of such clouds using the
Press-Schechter formalism. A difficulty arises from the fact that, in this formalism,
overdensities are characterized by their mass only, i.e. by only one parameter. This
degeneracy is somewhat troublesome because the value of the generated magnetic
field depends on the details (σ, δ0) of the clouds, and not just their mass.

Parameters δ0 and σ: relevant ranges As a halo of a given mass m can contain a
cloud of mass mc that can be either small and dense (small σ but large δ0), or large
and dilute (large σ but small δ0), the first step to alleviate this difficulty is to discuss
the relevant ranges for the parameters δ0 and σ.

The relevant values of δ0 are constrained by the absorption by the cloud of the
energetic photons (of frequency ν1) emitted by the source. Indeed, totally opaque
clouds cannot contribute efficiently to the magnetization of the IGM since no pho-
ton passes through them. More precisely, when light crosses a cloud modeled as
a Gaussian overdensity δ0 of width σ embedded in a background density n̄, the
radiation intensity behind the cloud is attenuated by a factor

ε = e−σν1

∫
nHidr � e−σν1 n̄(1+δ0)2σ (4.8)

with respect to the ambient radiation field. Using the fact that n̄σν1 = 1
�ν0

(
ν1
ν0

)−3
, we

may invert relation (4.8) to get

1 + δ0 � �ν0

2σ

(
ν1

ν0

)3

ln ε−1. (4.9)

From this expression, we easily get estimates of the relevant parameter ranges.
Indeed, consider for instance a cloud overdensity with δ0 � 5.5. At a redshift of
z = 15, we have shown that �ν0 � 0.05 kpc (cf. Table3.1). Considering ν1 = 10ν0
photons, a cloud size of σ � 5 kpc gives ε � 0.27. Considering ν1 = 4ν0 photons,

http://dx.doi.org/10.1007/978-3-319-61881-4_3
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the same cloud suffices to bring the attenuation factor ε down to 1.5 × 10−9. As
expected, we see that clouds with larger overdensities δ0 need to be smaller in extent
for them to be relevant to our mechanism.

On the other hand, larger overdensities correspond to halos that aremore advanced
in their evolution towards becoming fully non-linear structures that end up hosting
luminous sources. Since we are interested here in starless clouds only, we cannot
consider too large values of δ0. At the same time, too small values would correspond
to tiny linear perturbations unable to provide the medium with significant enough
anisotropies of the lines of sight from the central source of ionizing photons. Thus, a
reasonable compromise is to consider, as we did, clouds with δ0 � 5.55. Of course,
this value is not chosen randomly, since it corresponds to the density contrast of a
cloud at its turn-around, in the spherical collapse model, in a flat, matter dominated
universe (see for instance Mo et al. 2010, p. 217).

Once δ0 is fixed, we just need to limit the range of the parameter σ. As we just
saw, one upper bound is easily set by requiring that the resulting attenuation factor
is not too small, i.e. the cloud is not totally opaque. Another upper bound is simply
that, located at a distance D from the source of ionizing photons, the width of a
cloud cannot be larger than D − rs , otherwise it would encroach on the Strömgren
sphere of the source, which is not physical. Thus, in principle, when considering
a distribution of clouds, we could consider widths between 0 and the minimum of
these two upper bounds. However, we want to consider true clouds and not transient
density fluctuations due to acoustic pressure waves in the IGM. Thus, the lower
bound on σ is actually set naturally by the Jeans length, which is also consistent with
the fact that we consider cloud overdensities around their turn-around.

Finally, assuming that baryons occupy DM halos with the universal fraction, i.e.
that the mass of the cloud mc is linked to the mass of its parent DM halo m by

mc = �b

�m
m, (4.10)

and using the fact that a cloud parameterized by (σ, δ0) has a massmc � 4π
3 σ3n̄(1 +

δ0)mp (mp is the protonmass), these considerations then translate in a straightforward
manner in terms of the lower and upper bounds mmin and mmax in Eq. (4.5).

4.3 Magnetic Energy Density Generated in the IGM

Now that we know the magnetic field generated around an isolated source, in order to
compute the field generated in the whole Universe, we need to take into account the
cosmological context in which sources evolve. This will consist in three things. First,
the sources are contained in hosts of mass M , and we will use the Press-Schechter
formalism to estimate their statistical distribution, just like we did for the clouds.
Second, we need to take into account the fact that among all the DM overdensities
forming, not all of them contain sources and also in principle we need to model when
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(atwhich z) the sources form.Weare going to choose a rate atwhichDMhosts ‘switch
on’, i.e. in which a source forms, that makes our model consistent with an important
observational constraint on EoR, namely the optical depth parameter deduced from
the Planck data. Indeed, if too many hosts contain sources, then the EoR happens
too fast compared to observations, and vice versa. Third, a shortcoming we need to
remedy is that by simply summing up the contribution of the sources that appear, we
are not taking into account the overlapping of the various Strömgren spheres, which
is the very essence of EoR, and that is all the more important here that the present
magnetogenesis model operates in the neutral regions only. Therefore, something
must account for the fact that sources switching on early are isolated and thus indeed
generate the energy computed in the previous section, but those appearing towards
the end of the EoR hardly contribute to the magnetization of the IGM because not
much of the neutral gas is left. In this work, we propose to circumvent these two last
difficulties using the concept of ionization fraction of the IGM as follows.

4.3.1 Ionization of the IGM

Recall that one of the conclusions of Chap.3 is that in our simple model of EoR, the
first galaxies constituted the best compromise with respect to the various constraints.
We will thus for the present discussion consider as the sources of ionizing photons
only first galaxies.

Ionized Volume associated with DM hosts of mass M Consider a dark matter halo
ofmassM . Assuming baryons occupy it with the universal fraction, it contains amass
�b
�m

M of baryons. However, not all this mass is converted into the stars constituting
the hosted ionizing source, and we will call f∗ the fraction of baryons converted into
stars. Now, the volume of the ionized bubble generated by the source is the volume
of a sphere of radius equal to the Strömgren radius (e.g. Loeb and Furlanetto 2013,
and the considerations in Durrive and Langer 2015)

rs =
(

3Ṅion

4παBCn2Hi

)1/3

, (4.11)

where αB is the case-B recombination coefficient (αB = 2.6 × 10−13 cm3s−1 at a
gas temperature of 104 K), nHi is the neutral hydrogen number density in the IGM,
and C is the hydrogen clumping factor. The latter depends on the redshift and is still
rather poorly constrained.We use the fitting functionC(z) = 27.466 exp(−0.114z +
0.001328z2) obtained by Mellema et al. 2006. Finally, the rate at which the source
emits ionizing photons is by definition Ṅion = ∫ ∞

ν0
Lν

hν
dν. Now using the results from

the Yggdrasil model (Zackrisson et al. 2011, and additional ingredients like IMF
and metallicity discussed in section??), we find that for 106M� primordial galaxies,
the spectral index is α ∼ −2, the cut-off frequency ν1 ∼ 4ν0 and the normalisation
L0 ∼ 3 × 1025 erg s−1 Hz−1. From this we find that the rate of ionizing photons

http://dx.doi.org/10.1007/978-3-319-61881-4_3
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emitted per baryons is Ṅ� = 60 Myrs−1, and since there are f∗ �b
�m

M
mp

baryons in the
stars constituting our source, we find that the relevant rate at which ionizing photons
are emitted is

Ṅion = f∗ fesc Ṅ�

�b

�m

M

mp
, (4.12)

where we add the factor fesc, the escape fraction, to account for the fact that only a
fraction of the emitted photons may participate in the formation of the cosmological
Strömgren sphere.

All in all, we will associate to DM halos of mass M hosting sources an ionized
volume given by

Vion(M) = f∗ fesc Ṅ�

αBCn2HI

�b

�m

M

mp
, (4.13)

where Ṅ� = 60 Myrs−1.

Ionized fractionNeglecting any residual neutral fraction within ionized bubbles and
calling ggl the rate at which sources switch-on in DM halos, the ionized fraction at
time t , i.e. the volume filling factor of ionized bubbles, is given by

Qi (t) =
∫ t

dt
∫

M∗
dM Vion(M) ggl

dnM

dM
. (4.14)

Indeed, (dnM/dM) dM is the comoving number density of DM halos of mass
between M and M + dM (obtained using the Press-Schechter formalism), and each
of these halos is weighed by the volume it ionizes when it contains a source thanks to
the multiplication by gglVion(M). The lower mass limit for hosting galaxies is set to
M∗ = 108M�, corresponding to halos massive enough for atomic cooling, and gas
condensation to be effectivewith a pristine gas composition (e.g. Loeb and Furlanetto
2013).

Parameters consistent with data and simulationsA requirement is that our model
of Reionization must be consistent with the observations and the simulations related
to EoR. This will enable us to choose relevant numerical values for some of the free
parameters of the model.

The parameters f∗ and fesc are uncertain and depend both on redshift and the
source of ionizing photons. For example, observations of galaxies at z ∼ 3 by (Iwata
et al. 2009) indicate an escape fraction of fesc < 0.1 while numerical simulations
(Wise andCen 2009;Hayes et al. 2011;Wise et al. 2014) suggest that at high redshifts
it can be larger than 0.1. Here the detail of f∗ and fesc will not matter, the important
point being the number of ionizing photons outside the source, be it because there
are a lot of stars or because photons escape easily. Therefore we will combine these
two parameters by defining the parameter feff ≡ f∗ fesc and set feff = 10−3 in our
fiducial model.

For the parameter ggl, we take it equal to zero at redshifts greater than 20, and ggl =
1.5 × 10−9 yr−1 at z ≤ 20, in order for our model with feff = 10−3 to be consistent
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Fig. 4.2 Evolution with redshift, for different reionization parameters, of the ionization fraction
Qi (top left), of the integrated Thomson optical depth τ to the CMB (top right) and of the mean
comoving magnetic field strength (bottom). The red, green and blue curves are for feff = 10−3,
2 × 10−3, 0.5 × 10−3, respectively. The spectral index of ionizing sources is set to α = −2, cor-
responding to first galaxies

with themeasurements of the ionization fraction duringEoR. In ourmodel, this epoch
ends at z = 7, as shown in the top left plot of Fig. 4.2. For consistency checks, we also
computed the Thomson optical depth to the CMB, and as shown in the top right graph
of the same figure, the Reionization model we have assumed is perfectly consistent
with the Planck cosmological results published in 2015: τ = 0.066 ± 0.016 (Planck
Collaboration 2015, and still very well within the error bars of the most recent result
τ = 0.058 ± 0.012 released by the Planck Collaboration 2016).

4.3.2 Distribution of Sources

The expression (4.7) we derived in the previous section corresponds to the energy
generated in the IGM by an isolated source, while in principle when taking a dis-
tribution of sources into consideration, we must take into account the fact that the
various Strömgren spheres overlap. This is essential since our mechanism is efficient
only in neutral regions, so that we expect its efficiency to decrease as Reionization
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progresses. Hence, we cannot simply add up the contribution of sources hosted in
DM hosts with formula (4.7) without care, otherwise we would certainly overesti-
mate the field generation. Instead, let us consider the following expression for the
total comoving magnetic energy density present in the IGM at the time t :

B2
c

8π
=

∫ t

dt
1 − Qi

(1 + z)4

∫

M∗
dMEM ggl

dnM

dM
, (4.15)

(Comoving Energy Density Generated during EoR)

where Bc(t) is the comoving strength of the magnetic field and z is the redshift. First,
similarly to what we did in expression (4.14) with Vion(M), we weigh the number
density of halos by ggl so that once a source switches-on, we add its contribution,
but at each timestep, we add the contribution only of the newly born sources as we
should. Second, as we sum over time, we introduce a factor 1 − Qi which reduces
the amount of neutral Hydrogen in the model as time passes, consistently with the
amount of sources switching-on since Qi is given by (4.14). And finally, the (1 + z)4

factor comes from the fact that this formula corresponds to the comoving magnetic
field, since adiabatic dilution by the expansion goes as (1 + z)2 (cf Chap. 2).

Results In Fig. 4.2,we plot the comoving strength ofmagnetic fields, Bc, as a function
of redshift, which tells the same information as the comoving energy density. The
global trend is natural: as time passes, galaxies form and generate magnetic fields,
i.e. convert some of their radiation energy into magnetic energy, which accumulates
in the IGM, so that the curves raise with decreasing redshift. Once the Universe is
totally ionized, the generation of magnetic fields stops. Green curves correspond to
a Universe in which galaxies are ‘strong’, i.e. they emit ionizing photons at high
rates (high Ṅion, high feff), either because stars are formed very efficiently (high f∗)
or because photons are not trapped (high fesc). It is thus natural to see in Fig. 4.2
that they reionize the Universe faster than in the fiducial model (top left), and that
in this case the optical depth is larger since more electrons are freed sooner (top
right). The bottom plot of Fig. 4.2 may then come somewhat as a surprise, since it
shows that the mean magnetic field generated in the Universe is weaker. But this
surprise would originate in the same ‘naïve’ and incorrect intuition mentioned in
Sect. 3.2.3, namely that more powerful sources should generate stronger fields. In
fact, we recover the idea that what matters in this mechanism is the compromise
between having numerous photoionizations but in an extended neutral region. In this
model where galaxies reionize the Universe fast, there is simply not enough time
for stronger magnetic field seeds to emerge, which explains why the green curve is
below the others in the bottom plot of Fig. 4.2.

This model suggests that the Universe may be magnetized to the order of a few
10−18 G (comoving) thanks to photoionizations of the IGM all along the EoR. It is
an interesting first approach to the problem and shows that the order of magnitude
of the strength of the fields generated is not only important around isolated sources,
but in a global context too. This approach also has the huge advantage of showing

http://dx.doi.org/10.1007/978-3-319-61881-4_2
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where the difficulties in the modeling are in view of a more refined approach, and
it also gives us a valuable understanding of the various elements at play. However,
it is clearly very simplistic in many aspects and may be improved in many ways.
For example considering other sources than first galaxies as in Chap. 3, we could
derive the equivalent of the formula for the energy around an isolated source (4.7)
but taking into account the possible vicinity of other sources. This would not be
as straightforward as it seems, since we would need to assess properly the interac-
tion between adjacent sources and about how the field is generated in and around
clouds that are illuminated by multiple sources, is not obvious (e.g. how is the for-
mula for the generated field modified when the radiation field is not unidirectional).
Another improvement to take into account more precisely the spatial distribution of
the generated field will be presented in Sect. 5.2. Finally, now that we have a deep
understanding of the mechanism and of its impact in the cosmological context thanks
to analytical derivations, let us explore it further, in the following chapter, benefiting
from numerical simulations of the EoR.
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Chapter 5
Numerical Approach

In parallel to the works presented in Chaps. 3 and 4. I have been exploring this
magnetogenesis mechanism making use of the results of cosmological simulations.
I am currently working in collaboration with D. Aubert (Strasbourg, France) and our
work, introduced below, constitutes an article in preparation,with the provisional title
‘Topological and Statistical Properties ofMagnetic Field Seeds fromPhotoionization
during Reionization’ (Durrive and Aubert 2016).

5.1 Realistic Shape of Strömgren Spheres

Exploring a contribution switched-off so far Up to now, we have modeled our
Strömgren spheres literally as ‘spheres’, i.e. spherically symmetric objects. However,
as we have seen in Chap.1, it is clear from numerical simulations that realistic
Strömgren spheres are highly anisotropic. This is important for our matters here
because as we can see in the geometric term of the generated field, Eq. (3.22), an
angular dependence of the Strömgren radius rs makes the gradient in that formula
non radial and thus induces a non vanishing magnetic field. We anticipated this fact
earlier in our intuitive discussion of Chap.3, as illustrated in the right of Fig. 3.4.

How significant will the generated field be? We can expect this contribution to be
potentially very important, if not dominant, compared to the one studied so far due
to the clumpiness of the IGM. Indeed, from the previous analysis, we know that the
field is generated with the highest values and spans on the largest distances when
the gradients are closest to the Strömgren sphere, since as we move away from the
source, photons are absorbed and diluted making the mechanism less efficient. It
is not obvious however which of the gradients in the IGM or of the shape of the
Strömgren spheres are the greatest. We need to study precisely the importance of the
geometry of the ionized regions around the sources.

While it has been enriching to pursue analytically in the previous chapters, it is
interesting and important to also benefit from numerical tools to manipulate realis-
tic configurations. D. Aubert and his collaborators (Aubert et al. 2015) developed
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Fig. 5.1 Left Density field of neutral Hydrogen around a galaxy at z = 10 from a run of the
EMMA cosmological simulation. The green areas are mostly neutral, while the blue constitute
the fully ionized region, the Strömgren sphere, which is clearly not spherically symmetric. Right
Magnetic field generated through photoionizations using formula (3.20) with the density field of
the left panel. See text for a discussion

an AMR code, named EMMA, simulating the EoR. This code includes collision-
less dynamics, gas dynamics and radiative transfer in self-consistent simultaneous
processing, so that the Strömgren spheres have realistic shapes. I use the Hydrogen
density fields resulting from their simulations in formula (3.20). The difficulty to
implement this formula is that we need to compute the gradient of the integral of
the density, while the cube of data corresponding to nHi is described using cartesian
coordinates. Therefore, near the center, i.e. where the source is located, the sampling
is very coarse so the gradient is badly defined, and since we are dealing with an
integral quantity, the values far from the center are affected by the values computed
near the center. In other words, errors accumulate. I developed a code bypassing this
difficulty, and performed consistency tests, by recovering numerically the results
derived analytically in Chap.3 with a spherical Strömgren sphere and a Gaussian
inhomogeneity.

An illustrative result An example of a result is presented in Fig. 5.1, where the
magnetic field generated around a galaxy at z = 10 is shown. In the left panel,
the blue region corresponds to the Strömgren sphere, which has a realistic shape,
and the green and yellow areas correspond to the clumpy IGM, with a realistic
Hydrogen density distribution. In the right panel, the magnetic field in Gauss is
shown. As expected, the field is strong all along the edge of the Strömgren sphere,
and decreases with distance. In this example, the field strength reaches up to roughly
10−18 G, which is the order of magnitude obtained in Chap. 3 when the Gaussian
inhomogeneity was put very close to the ionization front (D ∼ rs). The Strömgren
sphere acts like a collection of little Gaussian inhomogeneities. In this figure we
can also perceive the footprint of the ‘interaction zone’. Indeed, starting from the
edge of the Strömgren sphere, the magnetic field may be roughly decomposed in
three shells: the red in which B is very strong, the green with intermediate values,
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and the blue in which the field is extremely weak. The green area corresponds to
the ‘interaction zone’, in which photons are not too absorbed and diluted. Now, is
the field generated inside the Strömgren sphere relevant? At this stage, this question
remains open because formula (3.20), used to derive this map of magnetic field,
is valid in the mostly neutral region outside the Strömgren sphere, but I still have
to check properly whether the assumptions made to lead to it may nevertheless be
relevant inside it. Butmost importantly, these values do not influencemuch the values
outside the sphere because the absorption inside is extremely small since the density
of neutral gas there is extremely small.

Figure5.1 confirms that this mechanism participates to the magnetization of an
important fraction of the IGM, far from the sources. This is interesting in the prospect
of the question of the origin of magnetic fields in voids, cf. Chap.1. But it is also
interesting to see the outskirts of Strömgren spheres being magnetized, since this
may have an impact on the formation of the next generation of stars. Indeed, even
though of extremely weak strengths, as many works have already shown, they may
be amplified very quickly and end up playing important dynamical roles. However,
as discussed in Chap.3, in regions where electron density and temperature gradients
are important, such as the edge of Strömgren spheres, the Biermann battery may be
the dominant process Doi and Susa (2011). The key point and particularity of the
present mechanism is that it may generate fields on large scales and far from the
sources.

5.2 Statistical Properties

Aparticularity of thismagnetogenesismechanism is that we have the full details of its
generation. In primordial magnetogenesis models for instance, we have access only
to statistical information, such as the power spectrumof the field. Here, wemay refine
themodel endlessly to characterize the field. Twonatural further steps in themodeling
that we initiated in the above works are (i) taking the evolution of the Strömgren
spheres into account and (ii) computing themagnetized volume fraction, as illustrated
in Fig. 5.2, rather than simply the mean energy density generated. Indeed, sources
generate magnetic fields of high strengths close to their Strömgren spheres and very
weak further out. Therefore, at a given epoch, we expect a small fraction of the
Universe to be highlymagnetized, at strengths corresponding to those generated at the
outskirts of the Strömgren spheres, and a weak magnetization of the whole Universe.
In fact, recall (cf. Fig. 4.1) that inChap.4we introduced a factor f to control the radial
extent of the magnetized region around one cloud in our computation. Numerically,
with the code that led us to Fig. 4.2, we observed that for f typically greater than 2
the mean energy density did not vary anymore. This shows that the field is generated
essentially inside or close to the clouds, showing the importance of assessing this
more precisely, with a figure like 5.2. I have already done the calculations to estimate
this analytically, in the same lines as for the mean energy density presented in the
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Fig. 5.2 One possible improvement to the simple estimate of the mean energy density presented
in Chap.4, is to compute the magnetized volume fraction for the three types of sources we are
considering. This figure shows a sketch of the result we may expect from the outcomes of Chap. 3:
Population III star clusters generate fields of high strength but in small volumes of the Universe,
while quasars do the opposite and galaxies have an intermediate behaviour. This result is within
reach by modifying slightly the calculations of Chap.4

previous chapter. It will also be very enlightening to compare these analytical results
with the numerical exploration I am currently undertaking using the outcomes of the
EMMA code (Durrive and Aubert 2016).
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Part II
Gravitational Fragmentation

of the Cosmic Web

As discussed in Chap. 1, matter in the Universe is distributed in a weblike struc-
ture. To describe it, three types of structures are distinguished, characterized by their
geometry: Walls are planar structures, filaments are cylindrical, and nodes are spher-
ical. This part of the manuscript is dedicated to studying the stability of walls and
filaments of the cosmic web with respect to gravitational instability. In Chap. 6, we
will first study the various equilibria relevant to describe the cosmicweb. Then, Chap.
7 will be an introduction to spectral theory as a tool to perform stability analyses,
i.e., to study waves and instabilities in these equilibria. I will first present it in the
context where I learnt it from, namely the plasma literature, and then present how
I transported this tool to the context of gravitational instability. Chapter 8 will be
dedicated to this in the planar case, relevant to study the stability of cosmic walls.
Although this geometry is simple, the equations will turn out to be rather involved,
so that this will also constitute a necessary preliminary step to the analysis of the
cylindrical case, that of cosmic filaments, which includes additional effects due to
curvature. This will be introduced in Chap. 9, together with other ongoing works and
prospects. I did this work in collaboration with M. Langer, and what is presented in
Chap. 8will soon be published (Durrive et al. 2017).
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Chapter 6
Equilibrium States of Cosmic Walls
and Filaments

The aim of this chapter is to compute the important equilibrium quantities of various
environments relevant tomodel the cosmicweb, and that will constitute the equilibria
that we will perturb in the following chapters. Since we are ultimately interested in
the evolution of perturbations, wemay at first consider too quickly a discussion of the
equilibrium state, while in fact one should not underestimate its analysis. Indeed, as
we will see later (Sect. 8.2.4), equilibrium relations will be the key to simplifying and
understanding the evolution of perturbations. References of historical importance on
the equilibrium states of self-gravitating structures are, for planar structures Ledoux
(1951), and for cylinders Ostriker (1964). But for an extremely detailed study of
polytropes (Lane-Emden equations, exact solutions and approximate solutions by
the method of multiple scales, magnetopolytropes, distorted, relativistic, rotating,
with background, expanding polytropes, etc.) see Horedt (2004).

6.1 Governing Equations

In this study, we will consider static equilibrium states. Physically, the static assump-
tion corresponds to considering equilibria such that the collapse and accretion are very
slow, slower than the growth time of the perturbations. The extension to equilibria
with flowwill be discussed in Chap.10, and the outcome of it will be that flows make
the analysis extremely involved and rich, but the essential features appear already
in the static case. Hence, the set of equations governing the equilibrium quantities,
denoted with a subscript 0, we are interested in here is the set (2.32) with vanishing
velocity. Momentum conservation reads −�∇ p0 + �j0 × �B0 + ρ0�g0 = �0, where p0,�j0, �B0, ρ0 and �g0 are respectively the equilibrium pressure, current density, magnetic
field, density, and gravitational acceleration. However in the present chapter we are
going to explicit only equilibria of unmagnetized fluids, relevant for the cosmolog-
ical context in which magnetic fields are extremely weak. Momentum conservation
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thus reduces to the following hydrostatic equilibrium

−�∇ p0 + ρ0�g0 = �0 (6.1)

(Hydrostatic equilibrium)

Physically, this relation states that the equilibrium density profile is such that pressure
counterbalances gravity at every position. Note that as such, with only Eq. (6.1), �g0 is
not constrained. It may be due to an external structure, for example a planet attracting
its atmosphere or a DarkMatter halo shaping the gravitational potential well in which
a galaxy forms, but it may also be due to the structure itself. The latter case, of self-
gravitating structures, is of great importance in the Astrophysical and Cosmological
context. The field �g0 has then to be computed self-consistently with (6.1), which
is the purpose of the Poisson equation. As discussed in Sect. 2.4, the equilibrium
gravitational acceleration and potential are governed by

�∇ · �g0 = −ω2
0 or ��0 = ω2

0 (6.2)

(Equilibrium Poisson equation)

where both quantities are linked through �g0 = −�∇�0, and where I define the
extremely important frequency

ω2
0 ≡ 4πGρ0 (6.3)

(Characteristic Frequency for Gravitation)

which is position dependent for general density profiles.
As discussed in Sect. 2.3, in order to have a closed set of equations defining fully

the equilibrium state, we still need to add to (6.1) and (6.2) a relation between p0
and ρ0, and throughout the manuscript we will consider the dynamics of fluids with
a polytropic equation of state

p0 = κρ
γ
0 (6.4)

(Polytropic Equilibrium)

where γ is the polytropic exponent, a constant given by the number of internal degrees
of freedom of the particles the fluid is made of, as introduced in Sect. 2.3. Note that in
the literature, equilibrium states are more often described in terms of the polytropic
index n rather than the polytropic exponent γ, which is essentially the same since
both are simply linked by

γ = 1 + 1/n. (6.5)

The reason of this redundancy in notations is the following. The polytropic index
n is more natural to use when working on the equilibrium state, because it appears
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naturally in the Lane Emden equation that we shall see below (cf. Eq. (6.23)), while
working with the polytropic exponent γ is more natural when discussing perturba-
tions, because, as we shall see in Sect. 9.2, a crucial point will be to compare how
the equilibrium state and perturbations behave thermodynamically, corresponding to
comparing their respective polytropic exponents γ with γad .

One of themost important quantities of the equilibrium state is the adiabatic speed

of sound defined as ca ≡
√

∂ p0
∂ρ0

where the derivative is taken at constant entropy. For
a polytrope we have

c2a = γ
p0
ρ0

= κγρ
γ−1
0 . (6.6)

An important point to notice is that since in general ρ0 is a decreasing function of
position (i.e. with distance from the center of the sphere, filament or slab), c2a is
decreasing too for γ > 1 but increasing for γ < 1. At the critical value γ = 1 the
speed of sound is uniform, which corresponds to an isothermal atmosphere. I stress
this property of the equilibrium state, anticipating our discussion on the behaviour of
perturbations in stratified media. Indeed, we know that in an atmosphere with a non
uniform temperature, the speed of sound varies with the position, so that wave fronts
are distorted as they travel through the medium. This process gives rise to acoustic
mirages and to the peculiar trajectories of p-modes in stars (cf. the discussion around
Fig. 7.1 below), which is the equivalent of the mirages occuring with light in deserts,
on the sea or on the road, where temperature gradients induce position dependent
refractive indices. Hence already from this fact we expect the system to be physically
easier to interpret in the case of an isothermal atmosphere, but also mathematically
it is clear that having c2a a constant rather than a function will surely simplify greatly
the analysis. For these reasons, in this manuscript, we will often focus on the case of
isothermal atmospheres. As we will see when generalizing to arbitrary γ’s, both for
the equilibrium and for perturbations, γ = 1 will clearly appear as a critical value,
separating regimes of qualitatively different nature.

6.2 Uniform External Gravitational Acceleration

For starters, let us consider the simplest case: A plane stratified (in the x direction)
polytropic atmosphere in a uniform external gravitational field �gext ≡ gext x̂ . We will
consider gext < 0, having in mind an upward x direction. As we will see (Sects. 8.1.3
and 8.3.3) thismodel is important to rely on, tomanipulate the tools to analyse pertur-
bations with minimal mathematical complications, as well as to develop our physical
intuition of the processes at play. But this model is also of physical interest per se:
The self gravity of the atmosphere of a planet is completely negligible compared to
the field in which it is embedded, so that this model is perfectly suited to analyse
waves in planetary atmosphere for instance.
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6.2.1 Density

The hydrostatic equilibrium (6.1) then simply reads

p′
0 = ρ0gext. (6.7)

Note the use of the notation gext rather than g0 here: We will use g0 in self-gravitating
situations, requiring Poisson equation (6.2), while here gext is a given quantity in the
problem. Now together with the polytropic equation of state (6.4), the hydrostatic
equilibrium yields:

Non-isothermal fluid (γ �= 1) In this case

(
ρ

γ−1
0

)′ = γ − 1

κγ
gext. (6.8)

Now, for a clearer presentation and in particular to compare the various equilibria
discussed in this section, let us work with dimensionless quantities. Define

ρ̄(x) ≡ ρ0(x)

ρc
with ρc ≡ ρ0(0), (6.9)

where the subscript c is used here in anticipation of the self-gravitating cases for
which ρc will represent the central (at x = 0) value of the density and will be used
extensively. Let us also adapt the length unit by working with

x̄ ≡ x

Lγ
with Lγ ≡ − 1

|γ − 1|
c2a(0)

gext
. (6.10)

The choice of sign comes from the fact that gext < 0. Then the equation onρ0 becomes
(now ′ is d/dx̄) (

ρ̄γ−1
)′ = ±1 (6.11)

i.e. using the definition ρ̄(0) = 1 to explicit the integration constant,

ρ̄ = (1 ± x̄)
1

γ−1 (6.12)

with a plus sign for γ < 1 and a minus sign otherwise.

Isothermal fluid (γ = 1) In this case

ρ′
0

ρ0
= gext

κ
. (6.13)
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Now, let us still work with the dimensionless density ρ̄(x) ≡ ρ0(x)
ρc

but

x̄ ≡ x

L1
with L1 ≡ − c2a

gext
. (6.14)

We have used the fact that, in this isothermal case, κ is equal to c2a (cf. relation
(6.6)) and is a constant, so that there is no need to specify the position at which it is
evaluated. Also, the choice of sign again comes from the fact that gext < 0. Then the
equation on the density becomes

(ln ρ̄)′ = −1 (6.15)

so that, because ρ̄(0) = 1, this state corresponds to an exponential atmosphere

ρ̄ = e−x̄ . (6.16)

We will come back to it several times in this manuscript, as a basis to build our
understanding of more complex situations.

6.2.2 Gravitational potential and acceleration

By construction here
�g0 = gext x̂ (6.17)

and since �g0 = −�∇φ0 = −φ′
0 x̂ we obtain

φ0(x) = −gextx + φc (6.18)

where φc ≡ φ0(0).

6.3 Self-gravitating Baryonic Structures

Let us now focus on self-gravitating systems: The gravitational acceleration in which
the fluid is embedded is the one produced by its own density profile. In other words,
we now include Poisson equation (6.2).
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6.3.1 Density

The hydrostatic equilibrium (6.1) for a general polytrope (6.4) gives

�g0 = κγρ
γ−2
0

�∇ρ0. (6.19)

Taking the divergence of this equation and using Poisson equation (6.2) yields the
equation governing ρ0.

Non-isothermal fluid (γ �= 1) With dimensionless density ρ̄ ≡ ρ0
ρc

this gives

⎧
⎪⎪⎨
⎪⎪⎩

�
(
ρ̄γ−1

) + ρ̄

L2
γ

= 0 for γ > 1

�
(
ρ̄γ−1

) − ρ̄

L2
γ

= 0 for γ < 1
(6.20)

where

Lγ ≡
√

κ

4πG

γ

|γ − 1|ρ
γ−2
c . (6.21)

It is now natural (cf. discussion around definition (6.5)) to put

θ ≡ ρ̄γ−1 (6.22)

and to work with the polytropic index n ≡ 1/(γ − 1) to finally rewrite this as

{
�θ + L−2

γ θn = 0 for γ > 1
�θ − L−2

γ θn = 0 for γ < 1
(6.23)

In the stellar literature, i.e. in spherical geometry, this is called a Lane-Emden equa-
tion. In the following, we will keep this terminology for other geometries too. Note
that there is a qualitative change for γ > 2 and < 2: The characteristic length scale
Lγ in (6.21) is decreasing or increasing with ρ0(0) depending on that ordering. In
particular, for γ = 2 the Eq. (6.31) does not depend on ρ0(0) at all anymore. In fact
in that case the Lane-Emden equation is a simple harmonic oscillator so that the
solutions are sine and cosine, which indeed do not present any envelop tending to
zero at infinity.

Isothermal fluid (γ = 1) With now

θ ≡ ln ρ̄ (6.24)

and

L1 =
√

κ

4πGρc
(6.25)
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Fig. 6.1 Profile ρ0(x) of a self-gravitating slab for various types of polytropes (γ = 0.5, γ = 1 and
γ = 1.5) with ρ(0)′ = 0. For γ > 1 the profile should be truncated. The vertical line indicates xt the
position given by the thickness (6.37). The same plots for a cylindrical profile ρ0(R) are visually
identical. In fact, the length scales Lγ and L1 are independent of the geometry considered, since
they appear in equations (6.23) and (6.26) without expliciting the Laplacian operator

where here κ is equal to c2a since the fluid is isothermal, the same procedure yields

�θ + L−2
1 eθ = 0 (6.26)

In mathematics this is called a Liouville equation, but as above, I will call Lane-
Emden equation the equation governing θ (i.e. ρ0) in all cases for simplicity. The
isothermal case is particularly convenient as it presents very simple exact solutions.
In planar geometry with x̄ ≡ x

L1
we have

ρ̄(x̄) = cosh−2

(
x̄√
2

)
(6.27)

and in cylindrical geometry with R̄ ≡ R
L1

we have

ρ̄(R̄) =
(
1 + R̄2

8

)−2

(6.28)

both chosen to have ρ̄(0)′ = 0 for simplicity.
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Contrary to the uniform external acceleration case of Sect. 6.2, the equation on ρ0
for a self-gravitating fluid is of second order, therefore we need two boundary condi-
tions to uniquely define the solution rather than one. In Fig. 6.1 we have considered
density profiles flat at the center, namely such that

ρ̄′(0) = 0 (6.29)

which is reasonable physically, but it is a priori not necessary.

6.3.2 Gravitational potential and acceleration

From relation (6.19) we obtain

�g0 = −�∇φ0 where φ0 =
{

κρ
γ−1
c γ

γ−1

(
1 − ρ̄γ−1

) + φc for γ �= 1
−κ ln ρ̄ + φc for γ = 1

(6.30)

where φc ≡ φ0(�0) is the central value of the potential.

6.3.3 Extent of the structure

The density profiles of cylinders and slabs are finite in extent for γ > 1, while they
are infinite otherwise and a thickness may be defined only by an arbitrary truncation.
Determining the extent of the structure is crucial, because as we will see in the
following chapters, the evolution of perturbations (the spectrum) strongly depends
on the boundary conditions.

Let us now explicit the thickness in the planar geometry, since it is the case we
will discuss the most in this manuscript. As mentionned, the following discussion is
relevant only for γ > 1 where the finite extent exists. Then using the nondimension-
alized position x̄ ≡ x/Lγ (so ′ here stands for d/dx̄) where Lγ is given by (6.21),
the Lane-Emden equation (6.23) becomes

θ′′ + θn = 0. (6.31)

Multiplying this equation by θ′ we may rewrite each term as a derivative, so that,
integrating, we obtain

(
θ′)2 + 2

n + 1
θn+1 = c0 (6.32)

where c0 is a constant, chosen equal to the value of the left hand side at x = 0. Note
that this relation provides us with the value of the derivative of the density at the
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edge of the slab, which can be a valuable information when discussing the boundary
conditions. Now, since by definition θ(0) = 1, we have

c0 = (
θ′
0

)2 + 2

n + 1
(6.33)

with θ′
0 ≡ θ′(x = 0). Since θ′ ≡ dθ

dx̄ , Eq. (6.32) may be rewritten

∫ 1

θ

dθ√
c0 − 2

n+1θ
n+1

= ±
∫ 0

x̄
d x̄ = ∓ x̄ (6.34)

where the fact that θ(x̄ = 0) = 1 has been used. For the situations of interest 0 ≤
θ ≤ 1, so that the square root is well defined. With the change of variable ϕ = αθ

where α = ( 2
(n+1)c0

)
1

n+1 , followed by a power law change of variable, the integral in
the left hand side of (6.34) can be rewritten in terms of the incomplete beta function
Bz(a, b) ≡ ∫ z

0 ta−1(1 − t)b−1dt . Doing so we finally get that

x̄ = ±
⎛
⎝ c

1−n
2

0

2(n + 1)n

⎞
⎠

1
n+1 [

B 2
(n+1)c0

ρ̄1+1/n

(
1

n + 1
,
1

2

)
− B 2

(n+1)c0

(
1

n + 1
,
1

2

)]

(6.35)

This relation looks complicated but is in fact simply in the form f (ρ̄) = x̄ , so all that is
left to do is invert thefirst beta function in the right hand side (the inverseBeta function
can be evaluated to arbitrary numerical precision in Mathematica for instance) and
we may have ρ̄ explicitly as a function of x̄ . But for the present discussion, let us
only explicit the thickness. Let’s call x̄t the smallest x̄ for which ρ̄ vanishes, which
is the natural way of defining the thickness of the slab. Since γ > 1 we have n > 0
and thus ρ̄(x̄t )

n+1
n = 0 without singularity. Now since B0(a, b) = 0 by definition of

this function, relation (6.35) gives (getting rid of ± because x̄t > 0)

x̄t =
⎛
⎝ c

1−n
2

0

2(n + 1)n

⎞
⎠

1
n+1

B 2
(n+1)c0

(
1

n + 1
,
1

2

)
(6.36)

Finally, the simple result we may keep in mind is that for the particular but common
case of a flat central profile, ρ̄′(0) = 0. The thickness is then simply given by

x̄t =
√

γ − 1

2γ
B

(
γ − 1

γ
,
1

2

)
(6.37)

(Thickness of a γ > 1 Self-Gravitating Slab)

where now B is the ordinary beta function.



80 6 Equilibrium States of Cosmic Walls and Filaments

6.4 Baryonic Structures Embedded in Dark Matter

In the cosmological context, baryons are not purely self-gravitating, but are often
embedded in Dark Matter. Describing the equilibrium system as a bi-fluid, we have
that the gravitational potential satisfies the following Poisson equation, rather than
(6.2),

��0 = 4πG
(
ρ0 + ρd0

)
(6.38)

where ρ0 is the equilibrium profile of baryons as before, and ρd0 is a chosen equilib-
rium profile of the Dark Matter fluid. The hydrostatic equilibrium equation remains
unchanged. Then the Lane Emden equations, (6.23) for γ �= 1 and (6.26) for γ = 1,
acquire a right hand side, namely

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�θ + L−2
γ θ

1
γ−1 =−L−2

γ

ρd0
ρc

for γ > 1

�θ + L−2
1 eθ =−L−2

1

ρd0
ρc

for γ = 1

�θ − L−2
γ θ

1
γ−1 = L−2

γ

ρd0
ρc

for γ < 1

(6.39)

In Sect. 6.3 we have been exploring the self-gravitating regime, corresponding to
ρ0 
 ρd0 . But given the overall matter content of the Universe, with about five times
more Dark Matter than baryonic matter, it is relevant1 to study the opposite regime,
namely ρ0 � ρd0 . This limit corresponds to neglecting the second term in the left hand
side of these equations. Therefore in this limit, the Lane-Emden equation becomes
a Poisson equation, namely

�θ = ±L−2
γ

ρd0
ρc

(6.40)

with a minus sign for γ ≥ 1 and a plus otherwise, and where Lγ is given by (6.21)
or (6.25) according to whether γ = 1 or not. For illustration, let us explicit two solu-
tions of (6.40), one in each of the geometries of interest, and for simple Dark Matter
profiles. Indeed, the dynamics of Dark Matter is in essence collisionless, and is best
treated in a kinetic approach. In the fluid description adopted here, we are reduced
to considering effective equilibrium profiles. Numerous studies of numerical cosmo-
logical simulations show that a remarkably good fit to the profiles of spherical Dark
Matter halos is the so-called ‘NFW profile’ (Navarro et al. 1996). Many alternatives
exist though, in particular because of its cusp (e.g. (Merritt et al., 2006; Hjorth et al.,
2015)). Similar studies for filaments and walls are more rare yet. For walls I will use
a simple model proposed in Wadekar and Hansen (2015) and for filaments I will use
an NFW type profile, to illustrate the effect on the baryon density of a cusp in the
Dark Matter profile. The ambition of this section is not to be exhaustive and build

1Note however that, despite the relevance of this idea, it is not obvious that the background always
shapes the profile as such, as Harford and Hamilton (2011) argue.
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many physical models of walls and filaments. The point is to expose two examples
which have the huge advantage of being analytical and particularly simple. Theymay
constitute interesting toy models to start discussing stability. Indeed, having at hand
very simple analytical models for the equilibrium is necessary given the complexity
of the full equations governing the perturbations, as we will see in Chap. 8.

Wall In planar geometry, working with nondimensionalized length x̄ ≡ x/Lγ , we
obtain

θ′′ = ±ρd0
ρc

. (6.41)

For illustration, let us consider a simple model for the Dark Matter background,
namely a core with a power-law cutoff (Wadekar and Hansen 2015)

ρd0(x) = ρdc

(
1 +

(
x

Ld

)2
)− 3

2

. (6.42)

with central density ρdc and scale height Ld . Then Eq. (6.41) can be solved and gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̄(x̄) =
[
1 + ξ − ξ

√
1 +

(
Lγ

Ld
x̄
)2

] 1
γ−1

for γ > 1

ρ̄(x̄) = exp

[
ξ

(
1 −

√
1 +

(
Lγ

Ld
x̄
)2

)]
for γ = 1

ρ̄(x̄) =
[
1 − ξ + ξ

√
1 +

(
Lγ

Ld
x̄
)2

] 1
γ−1

for γ < 1

(6.43)

where

ξ ≡
(
Ld

Lγ

)2 ρdc
ρc

. (6.44)

An integration constant has been removed imposingρ′
0(0) = 0 in the shownsolutions.

The isothermal expression should be compared to its self-gravitating counterpart
(6.27).

Filament In cylindrical geometry, working with nondimensionalized radius R̄ ≡
R/Lγ , Eq. (6.40) reads

1

R̄

(
R̄θ′)′ = ±ρd0

ρc
. (6.45)

http://dx.doi.org/10.1007/978-3-319-61881-4_8
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Fig. 6.2 Density profiles in the isothermal case, comparing the self-gravitating and the embedded
situations, in the planar (left panel) and cylindrical (right panel) cases. In order for this comparison
to make sense, these plots are such that the total mass (

∫ ∞
0 ρdx in the planar case and

∫ ∞
0 ρrdr

in the cylindrical case) is the same in both situations, i.e. the dashed blue curve represents a given
self-gravitating structure, and the continuous blue curve represents the profile of the same amount
of baryons but modified by the presence of Dark Matter, with profile represented by the gray area.
Note that two curves on the right panel are shrinked by a factor 10 to make the plot more readable.
Here ξ = 5 for the reason given in the text

A way of getting some feeling of this expression is to consider the following simple
Dark Matter model

ρd0(R) = ρdc

R
Ld

(
1 + R

Ld

)β
, (6.46)

inspired from the universal ‘NFW’ profiles of spherical halos. However, it turns out
that the calculations in the β = 2 case are particularly simple, so that to lighten
further the illustration, I will here only explicit this case. Note that the profile is then
really an NFW profile elongated in the longitudinal direction, and the solutions of
(6.45) are ⎧

⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ̄(R̄) =
[
1 − ξ ln

(
1 + Lγ

Ld
R̄
)] 1

γ−1
for γ > 1

ρ̄(R̄) =
(
1 + Lγ

Ld
R̄
)−ξ

for γ = 1

ρ̄(R̄) =
[
1 + ξ ln

(
1 + Lγ

Ld
R̄
)] 1

γ−1
for γ < 1

(6.47)

where ξ is also given by (6.44). The isothermal expression should be compared to
its self-gravitating counterpart (6.28). Look at the isothermal case. We see that close
to the center (R � Ld ) the profile plummets as ∼ 1 − ξ R

Ld
. How steep is this in our

context? Consider the total mass per unit length m∞ ≡ ∫ ∞
0 ρ0rdr , and the same for

Dark Matter noted as md∞. With the expressions of the Dark Matter profile (6.46)
and of the self-gravitating one (6.28), it is easy to show that the parameter ξ governs
the relative quantity of Dark versus baryonic matter since we have

ξ = 4
md∞
m∞

. (6.48)
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Now, since in the cosmological context there is typically five times more Dark than
baryonicmatter, ξ ∼ 20 is a relevant value. Therefore the profile in the embedded case
is extremely steep. Figure6.2 shows these profiles in the isothermal case, comparing
the self-gravitating and the embedded situations in the planar and cylindrical cases.

The expressions above may constitute very useful toy models to manipulate the
equations on the perturbations that we are going to derive in the following chapters.
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Chapter 7
Spectral Theory

Equilibrium configurations such as those discussed in the previous chapter may be
stable or unstable. In the latter case, the fate of the system is in great part dictatedby the
first stages of evolution of the perturbations which drive it away from its initial state
and lead it towards fragmentation. The fragmentation of self-gravitating sheet-like
and filamentary structures may in principle occur through many different instabili-
ties. In the cosmological context, thermal, Rayleigh-Taylor, Kelvin-Helmholtz, etc.,
may play a role in the denser environments of massive haloes (e.g. Kereš and Hern-
quist 2009). In the more dilute environment of the filamentary cosmic web, gravity
is the universal actor at play. Gravitational instability of sheet-like structures has
been explored by several authors since the seminal work of Ledoux (1951), essen-
tially in the context of the ISM. Most of these studies, if not all, concentrated on
the gravitational instability of equilibria configuration with an isothermal equation
of state (e.g. Ledoux 1951; Simon 1965b), pressure confined (e.g. Elmegreen and
Elmegreen 1978; Miyama et al. 1987a, b; Narita et al. 1988), including rotation (e.g.
Safronov 1960; Simon 1965a; Narita et al. 1988; Burkert and Hartmann 2004) and
magnetic fields (e.g. Strittmatter 1966; Kellman 1972, 1973; Langer 1978; Nakano
and Nakamura 1978; Tomisaka and Ikeuchi 1983; Nakano 1988). Studies that con-
sider deviations from isothermality include Goldreich and Lynden-Bell (1965) who
obtained stability criteria for pressure bounded, uniformly rotating polytropic sheets.
The fragmentation of cylindrical filaments was first studied by Chandrasekhar and
Fermi (1953) in the magnetized, isothermal and incompressible case and has been
since then the object of careful attention of many authors including, in addition to
those mentioned above, notably Ostriker (1964), and more recently Breysse et al.
(2014) and Freundlich et al. (2014a) for instance. Most these studies, if not all,
approach the problem with the usual procedure of analyzing the system of linearized
equations in the so-called primitive variables (see Sect. 7.1.1 below). In the present
work, we will adopt a different approach. We will study the onset of gravitational
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instability in the frame of spectral theory, in the force operator formalism introduced
below, and notably derive the full wave equation satisfied by the displacement vector
(cf. Chaps. 8 and 9).

As discussed at the beginning of Chap.6, in order to understand the evolution
of matter in the Universe, a detailed analysis of instabilities in stratified media is
essential.When on the contrary an equilibrium is stable, perturbations oscillate about
the equilibrium state. Understanding the occurrence and evolution of such waves
represents complementary information that helps understand instabilities. But it is
also important to study waves per se, as they can play fundamental dynamical roles,
essentially by carrying energy, the importance of which cannot be underestimated in
physics. I have presented in Chap.2 the general equations governing the dynamics
of self-gravitating, possibly magnetized fluids, and in Chap.6 the various physically
interesting equilibrium states in the astrophysical context. The purpose of this chapter
is to introduce general tools for stability analyses.

Ultimately, I wish to understand gravitational fragmentation of magnetized struc-
tures in full generality, because it is of great importance in the astrophysical context,
where magnetized structures are omnipresent. However, including magnetic fields
in cosmological structures is not necessary in a first approach, because cosmological
magnetic fields are far tooweak to play any dynamical role. Thus, the dynamics of the
cosmic web is essentially hydrodynamical. Also, as we will see, even without mag-
netic fields, studying gravitational fragmentation is already quite involved. Hence, it
would seem normal to leave considerations on magnetic fields for future work only.
Yet, I will not do so, for two simple reasons. First, the tools I propose to use to tackle
the question of gravitational fragmentation (even hydrodynamical only) are based on
the works of plasma physicists, who developed them primarily to study the stability
of plasmas in tokamaks for fusion research. Therefore, in this manuscript, discussing
magnetic fields will serve as the example to follow, and generalize in some aspects.
Second, as we will see, because I will adapt the description to that used by plasma
physicists, my work and results derived in the hydrodynamical case will be ideally
formulated to naturally incorporate magnetic fields in the description. My goal of
describing magnetized gravitational fragmentation will thus be at reach in a rather
close future, though still as a prospect for the present work.

We will proceed as follows. In Sect. 7.1, I will present the general tools necessary
for stability analyses, belonging to the realm of spectral theory. I will provide a brief
overview of their scope, to give the reader a flavor of their amazing extent, but also
in order to situate where the specific approach I will adopt in this manuscript fits
in, namely that of the eigenvalue problem formulation in the force operator formal-
ism. Then in Sect. 7.2, I will show how this method is applied to study magnetized
structures without gravity, in the frame of ideal MHD. In the light of this, we will be
ready to focus on waves and instabilities due to gravitation, without magnetic field.
In Sect. 7.3, we will discuss the general features of the problem, in preparation to
Chap.8, in which we will delve into a thorough analysis of the particular example of
a planar stratification, i.e. to study the stability of cosmic walls.

http://dx.doi.org/10.1007/978-3-319-61881-4_8
http://dx.doi.org/10.1007/978-3-319-61881-4_9
http://dx.doi.org/10.1007/978-3-319-61881-4_6
http://dx.doi.org/10.1007/978-3-319-61881-4_2
http://dx.doi.org/10.1007/978-3-319-61881-4_6
http://dx.doi.org/10.1007/978-3-319-61881-4_8
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7.1 Generalities

In Sect. 7.1.1, first I will present the most natural and common approach to study
gravitational fragmentation, namely the linearization of the fluid equations in terms of
the so-called primitive variables. Then I will justify that it is extremely advantageous
to rather work in terms of what is called the Lagrangian displacement vector, and
to perform the stability analysis in the frame of spectral theory, reformulating the
problem as an eigenvalue problem. In Sects. 7.1.2, 7.1.3 and 7.2, I summarize, in my
own words and adapted to the present purpose, a certain number of points developed
in the book of Goedbloed and Poedts (2004). This will introduce the reader to the
tools that I used in my own work, and will also be the opportunity to assess its scope,
and to help foresee the promising results it will later lead to. Then, from Sect. 7.3 to
the end of the manuscript, unless mentioned otherwise explicitly, the rest is the work
that I have done myself.

7.1.1 Governing Equations

7.1.1.1 Linearization with the Primitive Variables

Consider a magnetized, self-gravitating, static structure at equilibrium, i.e. sup-
pose that we have found a set of time-independent functions {ρ0(�r), �v0(�r) =
�0, p0(�r), �B0(�r),φ0(�r)} satisfying the set of Eq. (2.32). We are interested in assessing
how this system reacts to a given small amplitude perturbation. Following the usual
procedure, we do so by considering that the variables1 ρ, �v, p, �B and φ, are in the
form ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ(�r , t) = ρ0(�r) + ρ1(�r , t)
�v(�r , t) = �0 + �v1(�r , t)
p(�r , t) = p0(�r) + p1(�r , t)
�B(�r , t) = �B0(�r) + �B1(�r , t)
φ(�r , t) = φ0(�r) + φ1(�r , t)

(7.1)

where quantities with the subscript 1 constitute initially small deviations from the
equilibrium quantities, marked with subscript 0, i.e. that |ρ1| � ρ0, |p1| � p0,
| �B1| � | �B0| and |φ1| � |φ0|. Note that there is a subtlety for �v1 since we are
considering a static background �v0 = �0 and that |�v1| cannot be smaller than 0.
A relevant quantity to compare it to would be the local speed of sound (subsonic
perturbations), but we shall not try to be more rigorous on that point here, and we
will simply assume |�v1| to be ‘small enough’ to be considered as a first order quantity.

1These variables are referred to as ‘primitive’ to contrast with the other variable, �ξ, that we will
later use instead, and which is, in a sense, more ‘sophisticated’.

http://dx.doi.org/10.1007/978-3-319-61881-4_2
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Plugging expressions (7.1) in the set of Eq. (2.32), keeping only first order terms,
and simplifying the resulting equations using the fact that the equilibrium quantities
satisfy (2.32), we are left with the following set of linearized equations:

Linearized:⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ1 + �∇ · (ρ0�v1) = 0 (Mass conservation)
ρ0∂t �v1 = −�∇ p1 + �j1 × �B0 + �j0 × �B1 − ρ1 �∇φ0 − ρ0 �∇φ1 (Momentum Conservation)
�j1 = 1

μ0
�∇ × �B1 (Ampère’s law)

p1 = c2aρ1 (Closure Relation)

∂t �B1 = �∇ ×
(
�v1 × �B0

)
(Induction Equation)

�φ1 = 4πGρ1 (Poisson Equation)

(7.2)

I will give more details on the meaning of the terms in the momentum conservation
in the next section, where I expose again this set of equations but in the form that
will be suited for the subsequent analysis, namely Eq. (7.29).

Switching-off convection Let me give a precision on the closure relation above. In
the linearization procedure, we have assumed that the equilibrium and the perturbed
fluids satisfy the same set of Eq. (2.32), and in particular that the perturbed fluid
remains a polytrope of exponent γ, identical to the one of the equilibrium, i.e. that
p0 = κρ

γ
0 and p = κργ . Then, when linearizing, we have

p = κργ = κ(ρ0 + ρ1)
γ � κρ

γ
0(1 + γ

ρ1

ρ0
) (7.3)

since ρ1 � ρ0, so that identifying with p = p0 + p1 and using the definition of the
adiabatic speed of sound (6.6), we have

p1 = c2aρ1 (7.4)

(Closure Relation for Perturbations—No convection)

As I will detail in Sect. 9.2, by doing so we are preventing the advent of convec-
tive instability and of oscillations called g-modes. Allowing for different polytropic
exponents, a more general equation of state, used notably in stellar physics, is given
by relation (9.12). By adopting (7.4) we are avoiding the additional complications of
g-modes and convection, which is a good thing since the priority of this manuscript is
to study acoustic waves (p-modes in the stellar physics vocabulary) and their unstable
counterpart, gravitational fragmentation, which matters the most in the context of
the cosmic web.

Other form of the Linearized Poisson equation As for the equilibrium state, it is
fruitful to think about the perturbations related to gravity both in terms of gravitational

http://dx.doi.org/10.1007/978-3-319-61881-4_2
http://dx.doi.org/10.1007/978-3-319-61881-4_2
http://dx.doi.org/10.1007/978-3-319-61881-4_2
http://dx.doi.org/10.1007/978-3-319-61881-4_6
http://dx.doi.org/10.1007/978-3-319-61881-4_9
http://dx.doi.org/10.1007/978-3-319-61881-4_9
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potential φ1 and acceleration �g1. In the set of Eq. (7.2) I have explicited the linearized
Poisson equation for the potential. For the acceleration, linearizing (2.30) gives

�∇ · �g1 = −4πGρ1 . (7.5)

(Linearized Poisson Equation for �g1)
Now, note that the gravitational potential φ1 is a scalar, so that one equation (�φ1 =
4πGρ1) is sufficient, but �g1 is a vectorial quantity so that, as such, the scalar relation
(7.5) alone is not constraining enough to define it fully. The information missing
in (7.5) is that the gravitational acceleration is a gradient (�g1 = −�∇φ1) and is thus
irrotational. Hence, to keep the same amount of information as when working with
φ1, we must add the constraint

�∇ × �g1 = �0. (7.6)

In this manuscript, I will often privilege a description in terms of the gravitational
fields �g0 and �g1 rather that the potentials φ0 and φ1 because, in my opinion, it makes
the equations look simpler and thus easier to manipulate, as it avoids additional
gradient operators.

Finally, note that Eq. (7.5) may also be written in integral form2 as

�g1 = −G
∫

ρ1(�r ′)
�r − �r ′

|�r − �r ′|3 d
3r ′, (7.7)

or, in a form exhibiting the integral form of �1,

�g1 = −�∇�1 where �1 = −G
∫

ρ1(�r ′)
|�r − �r ′|d

3 �r ′, (7.8)

which will constitute another point of view and other ways of formulating the prob-
lem, as for instance in Sect. 7.3.

7.1.1.2 A First Approach to Gravitational Fragmentation

Let us for now focus on gravitation. Linearizing the equations making use of the
primitive variables ρ, �v, p and φ, as we are doing so far, is the approach followed
in every Cosmology textbook. Ignoring magnetic fields in (7.2) and considering
the closure relation p1 = c2aρ1, perturbations are governed by the linearized mass
conservation, linearized Poisson equation and the followingmomentum conservation

ρ0∂t �v1 + �∇ (
c2aρ1

) + ρ1 �∇φ0 + ρ0 �∇φ1 = �0. (7.9)

2Omitting surface terms, the discussion of which is out of my scope here. For their analysis in the
stellar case, see Cox (1980) and Smeyers and Van Hoolst (2010) for instance.

http://dx.doi.org/10.1007/978-3-319-61881-4_2
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AhistoricmilestoneAmong the results J. Jeans derived in his works on gravitational
instability in the early twentieth century (Jeans 1902), the best-known is what is
now called the Jeans criterion. To derive it, let us consider the simplest equilibrium
density profile possible, namely a homogeneous profile ρ0 = constant at rest. Note
that this profile is not a solution of the equilibrium equations of a self-gravitating
fluid (hydrostatic equilibrium and Poisson equation as discussed in Chap.6). The
trick is to still manipulate the perturbation equations considering that the density
ρ0 does not depend on position, despite its conflict with the equilibrium equations.
Doing so is now known as the ‘Jeans swindle’ (see for instance Binney and Tremaine
2008). In this case, we get rid of the term �∇φ0 in (7.9) and treat ρ0 and c2a as mere
constants. Then, taking the divergence of (7.9) andmaking use of the linearizedmass
conservation and Poisson equations, we obtain the following equation on ρ1 only

∂2
t ρ1 − c2a�ρ1 − 4πGρ0ρ1 = 0 . (7.10)

(Wave Equation—Jeans Swindle)

This equation is a type of wave equation, because of the presence of the d’Alembert3

operator c−2
a ∂2

t −�. It governs the behaviour of density perturbations in thismedium,
that is, in the stable regime, of acoustic waves, and in the unstable regime, of gravita-
tional fragmentation. Now, due to our assumptions, all coefficients are constant here,
so that we may Fourier transform with respect to all variables (spatial and temporal).
We may thus consider plane wave solutions

ρ1 ∝ ei(
�k·�r−ωt). (7.11)

Inserting these in the above wave equation yields the following dispersion relation

ω2 = c2ak
2 − 4πGρ0 = c2a

(
k2 − k2J

)
(7.12)

(Jeans Dispersion Relation)

where the (homogeneous) Jeans wavenumber is defined as

kJ ≡
√
4πGρ0

c2a
. (7.13)

(Jeans Wavenumber)

3More precisely, this is called a Klein-Gordon equation, in which the Jeans wavenumber (cf. below)
acts as the mass parameter. Physically, it is interesting to thus see the competition between gravita-
tional attraction of the background and pressure (quantified by the Jeans wavenumber) as an inertia
of the perturbation (like mass in the particle physics context), and hence acoustic waves behave
differently than in the absence of gravity.

http://dx.doi.org/10.1007/978-3-319-61881-4_6
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From this, we can see that perturbations with a wavenumber k greater than kJ (i.e.
smallwavelengths) have a real angular frequency (ω2 > 0), corresponding to anoscil-
latory behaviour, while for k smaller than kJ (i.e. large wavelengths), perturbations
grow exponentially with time (ω2 < 0), resulting in gravitational fragmentation of
the equilibrium, homogeneous medium of density ρ0. This result is known as ‘Jeans
criterion’.

It is enlightening to reformulate this criterion in terms of timescales. The charac-
teristic timescale corresponding to gravitational attraction is the so-called free fall
time

tff ≡ 1√
4πGρ0

, (7.14)

which is apparent in the right hand side of the equilibrium Poisson equation for
instance, and the characteristic timescale of sound propagation is the time a sound
wave takes to travel a distance k−1, namely

ts ≡ 1

kca
. (7.15)

The key point is that sound propagation is not instantaneous (while, as mentioned
before, in our Newtonian framework gravitation is instantaneous), which is why
ts depends on the scale k considered, and which is why for perturbations of large
extent, pressure, mediated by sound waves, does not have time to compensate the
gravitational infall of matter into the potential well generated by the overdensities.
For small wavelengths on the contrary, pressure may balance gravity, resulting in
simple oscillations. The wavenumber for which both times are equal, ts = tff, is
the Jeans wavenumber, marking the transition between oscillatory and exponential
behaviour.

Stratified media: Intuitively But how do perturbations evolve (waves and gravita-
tional fragmentation) in realistic media, which are not homogeneous, but stratified?

Waves—First, let us focus on the behaviour of acoustic waves. Naturally, waves in
stratified media have long been a subject of study, for example in terrestrial contexts,
such as seismology, atmospheric physics and oceanography, but also in the astro-
physical context to understand stars for example, as their oscillations are not only a
key to figuring out their dynamics but also to probe remotely fromEarth their internal
structure. Thanks to these researches, we are inheriting an abundant knowledge of
the effects of stratification on the evolution of waves. For instance, just like light
rays are bent by spatially varying refractive indices in temperature-stratified media
(such as in a desert, a beach or a road heated by the sun), small wavelength acoustic
waves may be described in terms of ray theory, with analogous behaviours. In stars
for instance, the radial temperature gradient due to the central heating gives rise to
the beautiful rosette-like shapes of the wave fronts of p-modes (i.e. acoustic waves)
represented in Fig. 7.1.

Another physical process is at play in stratified media when they are subject to
gravity, namely f-modes and Rayleigh-Taylor instability. To illustrate this, let us
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Fig. 7.1 Schematic cross-section of the solar interior, in which the propagation of ‘rays of sound’
is represented, i.e. acoustic waves in the small wavelength limit, in analogy with geometrical optics.
The curves ending with an arrow represent the direction perpendicular to wave fronts. As they
go deeper towards the solar interior, they are bent by the increase in speed of sound due to the
temperature stratification, until they reach a turning point (the collection of which forms the dotted
circles) where they are totally refracted and start propagating towards the surface. At the surface
the waves are totally reflected because the density gradient there is very steep. The various curves
represent various modes, of different wavelengths. (Source Fig. 3 of İbanoğlu 2000)

consider a piecewise-homogeneous fluid, i.e. a fluid composed of two homogeneous
parts of different densities, lying one on top of the other. When the surface separating
the twomedia is perfectly horizontal, that configuration is at equilibrium. If the upper
fluid is lighter than the lower one, then this equilibrium is stable because a volume
element from the upper fluid that is brought downwards in the denser fluid will be
pushed back by buoyancy. The corresponding oscillations correspond to f-modes at
the surface of stars for example. If on the contrary the upper fluid is denser, then the
equilibrium is unstable and a slight perturbation of the separatrix will be amplified by
gravitywhichwill invert the ordering of the twomedia, the denser one taking the place
of the lighter medium at the bottom. This is the so called Rayleigh-Taylor instability.
Now, interpreting a continuously stratified medium as a collection of such interfaces
with infinitesimally varying densities, we expect gravity in a stratified medium to
either induce internal oscillations, when the density decreases with altitude, or an
instability in the opposite case.

Many other phenomena may occur in complex situations, and my ambition is
not to try and review them all here. Instead, let me mention a last point that is
of great importance, notably in the study undertaken in this manuscript. From the
aforementioned physical contexts, we are taught how much boundaries matter, and
not only locally at the boundaries themselves, but they may impact the evolution
of the whole structure. For instance, the behaviour of internal waves in the ocean
depends on its depth, and similarly in atmospheres where the wavelength becomes
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Fig. 7.2 Indashed lines are sketches of a typical equilibriumdensity profileρ0 and its corresponding
gravitational potential �0. In the presence of a small perturbation ξ, a little amount of matter is
displaced from its equilibrium position, modifying slightly the density and potential profiles to
respectively ρ0 + ρ1 and �0 + �1 (the continuous lines). The problem addressed in this part of
the manuscript may then be stated as follows: Under certain conditions, to be determined, density
perturbations induce potential well perturbations that may lead to the fragmentation of the global
structure

comparable to the local density scale height, waves are reflected, leading to regions
of mode trapping.

In light of this short discussion, we may already build up an intuition of what
may happen in the cosmological context. Filaments of the cosmic web may act as
waveguides, inducing a privileged direction for the propagation of waves, and thus
redistribute anistropically the energy, along their longitudinal direction, i.e. towards
the nodes. While in stars modes are trapped and have the trajectories illustrated in
Fig. 7.1, in cylinders they are not trapped longitudinally so that they will have heli-
coidal trajectories instead. But cosmological filaments are not infinitely long. They
are bounded by clusters. Therefore wemay expect modes of longitudinal wavelength
much smaller than the intercluster distance to behave qualitatively differently than
those with a longitudinal wavelength greater than this length. Similarly, in the radial
direction, the length scale associated with the stratification due to the density profile
must delimit two different regimes for the behaviour of waves, with longwavelengths
being stationary, as opposed to short wavelengths. These behaviours depend on how
structured the filament is, since it most likely depends on how steep the density
profile in the radial direction is, and on the relative density and size of the clusters
it connects in the longitudinal direction. Therefore, it will strongly depend on the
cosmological epoch and the scale of the considered filament. We also get a feeling
that a Dark matter background, which may steepen equilibrium density profiles as
we have seen in Sect. 6.4, will also modify the behaviour of perturbations.

Gravitational fragmentation—The aforementioned considerations neglect, for
legitimate reasons in their respective contexts, the following fact. An acoustic wave is
essentially nothing but a succession of overdense and underdense regions, therefore,

http://dx.doi.org/10.1007/978-3-319-61881-4_6
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as represented in Fig. 7.2, a wave propagating in a stratified medium modifies the
gravitational potential well of the global structure within which it propagates. More
precisely, we may intuitively distinguish two processes:

(i) The overdensities constituting the wave will tend to fall into the overall poten-
tial well dictated by the global structure, i.e. ‘ρ1 falls into �0’, and the name
‘Cowling’ will be associated with this aspect in the following,

(ii) the overdensities constituting the wave generate potential wells too, and this
local perturbation of the potential well affects the entire distribution of matter,
i.e. ‘ρ0 falls into �1’, and the name ‘Jeans’ will be associated with this aspect
in the following. This corresponds to the local growth of overdensities, hence to
the gravitational fragmentation of the global structure.

Note that, in fact, one may think of an additional phenomenon: The overdensity may
fall into the potential well it generates itself i.e. ‘ρ1 falling into�1’. This corresponds
to the self-gravity of the perturbation, just like the equilibrium profile ρ0 is stemming
from self-gravitation. However this effect is neglible because it is of second order.

Orders of magnitude—Let us now take a glimpse at the numerical values of
the Jeans length in various structures of astrophysical and cosmological interest,
and compare them with the relevant lengths involved. To do so, let us consider the

following very simple estimate of the Jeans length: By definition λJ ≡ 2π
kJ

=
√

πc2a
Gρ

and, for an ideal gas of Hydrogen, the speed of sound is given by c2a = γ kBT
m where

γ = 5/3 and m is the proton mass. We then get

λJ =
√

πγkBT

Gm2n
. (7.16)

In a spherically stratified structure, like a star, perturbationsmay not be of arbitrary
length: the wavelength of perturbations cannot exceed the perimeter of the star.
Considering a sun-like star, with typical central volumic mass ρ̄c ∼ 10 gcm−3 and
thus typical density about the surface ρ̄s ∼ 0.1 gcm−3 where the longest perturbation
may be present, composed only of protons and with typical internal temperature
106 K, we obtain

λJ = 2 × 106 km

(
T

106K

)1/2 ( n

1023 cm−3

)−1/2
. (7.17)

This value is of the order of the Solar perimeter. Therefore, perturbations in stars
always have wavelengths shorter than the Jeans length, so that these objects do not
fragment gravitationally but oscillate about their equilibrium configuration. This was
to be expected since we know by experience that typical stars are gravitionally stable.
Their lifetime is dictated by the amount of fuel they have to maintain nuclear fusion
and not by gravitational instability. Having said that, note that this value of the Jeans
length is of the order of the wavelength of the lowest order perturbations. Therefore,
we may expect the lowest order perturbations to oscillate differently, in a manner to
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be defined precisely, than those with wavelengths significantly smaller than the Jeans
length, since they oscillate with wavelengths close to those of the unstable regime.

A cylindrically stratified structure however is fundamentally different since one of
its dimensions, the longitudinal one, has an infinite extent or, at least, an extent much
longer than the other two dimensions. Perturbations of arbitrary (almost) wavelength
may thus be present and fragmentation should, a priori, always be able to occur. In
reality of course, structures like cosmological filaments have a finite extent, namely
the distance separating the clusters that the filament interconnects. This is typically
several Mpc long. The same applies to plane stratified structures, which even have
two a priori unlimited directions. In reality, cosmic wall have typically dimensions
(transverse to the stratification) of the order of the radius of cosmic voids, namely
larger than a few tens of Mpc. These lengths should again be compared to the Jeans
length. To get an idea, let us consider a homogeneous and isotropic universe in which
the density depends on redshift as n̄ � 2×10−7(1+z)3 cm−3, and the gas temperature
depends on redshift as T ∝ (1 + z)2, so that the Jeans length in the intergalactic
medium decreases with redshift (increases with time) basically as λJ ∝ (1+ z)−1/2.
During the Dark Ages, the intergalactic medium was quite cold, with temperature
of the order of tens of Kelvins (e.g. Loeb and Furlanetto 2013; Mesinger 2016).
Reionization then heated it up to roughly T ∼ 104 K. Now, considering intergalactic
values just before Reionization occured (say at z ∼ 9, Planck Collaboration 2016),
we obtain

λJ = 11 kpc

(
T

30K

)1/2 ( n

10−4 cm−3

)−1/2
. (7.18)

In other words, voids, walls and filaments could have had typical sizes larger than
the Jeans lengths during the Dark Ages, and may in principle have been subject to
gravitational fragmentation.

Finally, note that with valuesmore relevant for the interstellarmedium, this simple
estimate of the Jeans length yields (references values are those of the Cold Neutral
Medium of the ISM Lequeux et al. 2005)

λJ = 37 pc

(
T

102K

)1/2 ( n

30 cm−3

)−1/2
. (7.19)

This falls precisely in the range of lengths scales of structures observed in the ISM,
which is a sign that gravitational instability plays a major role in structure formation,
and stresses the importance of fully understanding this processes.

The above intuitive discussion complemented with some orders of magnitude is
an important start, but one may not conclude on the possibility of fragmentation
directly from this, because the Jeans criterion (7.12) is derived from the study of the
fragmentation of homogeneous equilibria. Let us now investigate precisely how this
occurs in stratified media.

Stratified media: Formally The ultimate goal of my study is to identify where
precisely the phenomena that we have discussed intuitively above appear in the
formalism, in order to assess precisely the role they play in the structuring of the
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Universe at its largest scales. To do so, let us now look for the generalization of
the wave Eq. (7.10), governing the dynamics of density perturbations ρ1 around an
arbitrary equilibriumdensity profileρ0(�r). Let us again take the partial time derivative
of (2.13), the divergence of (7.9), and subtract them. This yields

∂2
t ρ1 − ( �∇ρ1 · �∇φ0 + �∇ρ0 · �∇φ1) − (ρ1�φ0 + ρ0�φ1) − �

(
c2aρ1

) = 0. (7.20)

As such, this equation is already rather involved. But to get an equation for ρ1 only,
we still have to get rid of φ1. The difficulty comes from the fact that the gradient
of φ1 intervenes while φ1 is linked to ρ1 through its Laplacian only (the linearized
Poisson equation (7.5)), so that the �∇ρ0 · �∇φ1 term requires further differentiation
and manipulations. It is possible to do so, but the equation gets humongous and this
procedure does not allow us to follow the meaning of the various steps. Also, in
terms of content, the system studied here is in essence very simple: no convection,
no rotation, no magnetic field, no flow, etc. Adding these ingredients would require
a lot of additional work and ingenuity.

Instead of trying to climb this mountain alone, I propose to follow the steps taken
by researchers from another field, namely plasma physics. In great part motivated
by the need to study the stability of tokamaks, plasma physicists already developed
very powerful tools to analyze waves and instabilities in stratified media, of various
geometries, in a most rigorous and systematic way. My ambition is to study gravi-
tational fragmentation in stratified media, having in mind the cosmic web, precisely
in the line of their works.

For instance, while in the homogeneous case above, we ‘simply’ have to consider
plane wave solutions (7.11), how may we obtain information on the stability of
the system, and on the properties of its fragmentation, when dealing with the more
involved inhomogeneous case, governed by an equation that (7.20) gives a hint of
the complexity? Also, how should one deal with geometric effects, when considering
cylindrically stratified media such as in cosmic filaments? What is the importance
and the role played by boundary conditions, a discussion which is of course absent
in the homogeneous case? As we shall see, spectral theory (Sect. 7.2) will be a very
useful tool to help us probe the stability of such systems and answer these questions,
and many others.

7.1.1.3 Linearization with the Lagrangian Displacement Vector �ξ

The first step to match our approach of gravitational fragmentation to the techniques
used by plasma physicists, is to use the same variable as they do. So far we have
linearized the system of Eq. (2.32) in terms of the primitive variables ρ, �v, p, �B and φ
(or �g). In fact, it turns out to be extremely powerful to adopt a description making use
of the so-called Lagrangian displacement vector �ξ, i.e. to perform a transformation
called the Lagrangian reduction (Goedbloed and Poedts 2004). This new variable is
more fundamental in the sense that all the perturbed primitive quantities above may
be expressed in terms of �ξ alone, so that �ξ carries all the information in itself.

http://dx.doi.org/10.1007/978-3-319-61881-4_2
http://dx.doi.org/10.1007/978-3-319-61881-4_2
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Fig. 7.3 At a given time t ,
the displacement vector �ξ is
the difference between the
position vector �r of a fluid
element of the perturbed
fluid and the position vector
�runp of that fluid element if
the fluid were unperturbed
(adapted from Frieman and
Rotenberg 1960)

Figure7.3 represents intuitively what the displacement vector �ξ is, in the most
general case in which the unperturbed fluid is moving. The vector field �ξ is defined
by the relation

�r = �runp + �ξ(�runp, t) (7.21)

where �r is the position of fluid elements of the perturbed fluid, while �runp is the
position of fluid elements of the unperturbed fluid. In other words, �ξ tells where the
fluid elements are with respect to where they would be if the fluid were not perturbed.
It is a Lagrangian quantity in the sense that it is defined by following the fluid
elements, as opposed to the Eulerian way of describing fluids, in which the flow field
is described from fixed locations in space and through which the fluid flows. Historic
milestones introducing the importance of this vector field are Bernstein et al. (1958)
in the static case, and Frieman and Rotenberg (1960) in the presence of a stationary
background flow.

To make use of �ξ in practice, we need to relate it to the velocity flow �v1. The main
subtlety in doing so is that the primitive variables above are defined in the Eulerian
description, while �ξ is Lagrangian. Now, in the present manuscript I will work in the
case of static equilibria (with only a brief presentation of what flows may modify in
Chap.10), and we will admit that in this case the link between the Eulerian velocity
perturbation �v1 and the Lagrangian displacement vector �ξ is simply

�v1 = ∂t �ξ (7.22)

(Lagrangian Displacement Vector—Static Background)

In our context, the vector �ξ is thus simply the time primitive of the velocity �v1. For
a more general and precise definition with the related derivations, see for instance
Sect. 12.2.2 of Goedbloed et al. (2010).

http://dx.doi.org/10.1007/978-3-319-61881-4_10
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Let us now try to get a sense of the physical meaning of the Lagrangian reduction
we are presently undertaking.

(i) Linearizing in terms of the primitive variables consists in saying that when a
system initially at equilibrium undergoes a small perturbation, each of the variables
ρ, �v, p, �B and φ, separately, is (weakly) modified. However these quantities do not
evolve independently, and the challenge consists in finding how these quantities may
have been modified in a consistent way. Formally, this corresponds to solving a set of
equations. Intuitively, if we perturb a given physical quantity, the system rearranges
itself through a cascade of events so that it returns to an equilibrium configuration in
the stable case. For example, if the magnetic field, for some reason, gets a little bit
different here, then pressure gets adjusted, and thus density varies as well, etc.

(ii) In the description using the displacement vector, the first stepwill be to express
all these physical primitive quantities in terms of �ξ only.4 Therefore, in this descrip-
tion, we will be able to tell directly what the magnetic field, the density etc. are
equal to, given how the fluid elements are displaced by the perturbation. Thus, the
problem will be reduced to telling where the fluid elements are, i.e. determining how
the fluid elements move in the system in reaction to the perturbation. Formally, this
will correspond to solving the equation governing �ξ (see the eigenvalue problem
of Eq. (7.28) below), and only then will we be able to deduce the behaviour of the
physical quantities. This approach is thus more fundamental than the previous one
in the sense that, once we have solved for �ξ, we know virtually everything about the
system.

These two approaches are thus very different, but which is best? As always, it all
depends on the answers we are looking for, i.e. the precise questions we are asking.
An approach such as based on the wave Eq. (7.20) on ρ1 for example would ‘only’
tell us how the density evolves. But this may be sufficient in certain situations. Hence,
this primitive approach may still be interesting when it turns out to be simpler and
sufficient. I will come back to this comment in section (9.3), but until then I will
focus on using the Lagrangian displacement vector, which is the most powerful tool.

Let us now explore how to study the stability of a system when perturbations are
described in terms of �ξ. This will provide the reader with a global picture of what
can be done, and will be the opportunity to set the frame in which the work I will
then present, about gravitational fragmentation, fits in.

7.1.2 Stability: Intuitively

There are at least two essential ways of analyzing the dynamics of systems: reason-
ing in terms of forces, using essentially Newton’s laws, and reasoning in terms of
energy, withEuler-Lagrange,Hamilton, orHamilton-Jacobi’s equations.Historically

4Cf. Eq. (7.22) for �v1, which comes from the definition of �ξ, and then respectively (7.30) for ρ1,
(7.31) for p1, (7.32) for �B1 and (7.34) for �g1, which come from the physics governing the system,
i.e. from the conservation laws.

http://dx.doi.org/10.1007/978-3-319-61881-4_9
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Fig. 7.4 Intuitively, an equilibrium is stable if, when volume elements are displaced from their
equilibrium position, the force acting on them brings them back to their initial position, otherwise
the equilibrium is unstable. In a description based on the concept of energy, this corresponds to
being at the bottom of a potential well (stable) or the top of a potential hill, and in a normal mode
analysis terminology, stability is given by the sign of the eigenvalue ω2 (adapted from Goedbloed
and Poedts 2004)

these two viewpoints correspond to respectively Newton’s and Liebniz’s legacies.
Of course, adopting one or the other yields the same results, but depending on the
answers we are looking for and depending on the situation, one approach may turn
out to be more convenient than the other. As far as linear stability studies are con-
cerned, these two viewpoints are summarized (i) intuitively speaking in Fig. 7.4 and
(ii) formally speaking in Fig. 7.5. The latter will be discussed in more details in the
next section.

Intuitively, if one perturbs an equilibrium state by displacing a volume element
from its position �r to a position �r + �ξ, two situations may occur: (i) the local forces
acting on the volume element bring it back towards its initial position (�ξ and �F in
opposite directions in Fig. 7.4), or (ii) they take it away from its initial position (�ξ
and �F in the same direction in Fig. 7.4). The first situation corresponds to a stable
equilibrium, the other one to an unstable equilibrium.Using the energetic description,
stable situations correspond tominima of the potential energy and unstable situations
to maxima.5

Note that in fact, one may think of other possibilities, which we will not con-
sider in this manuscript, but that are interesting to keep in mind. For instance, once
displaced, the volume element may come back towards its equilibrium position,
auguring stability, but with a restoring force that provides it with enough energy for
it to leave again this position, thus transiting rather than actually settling back. This
may occur several times, resulting in oscillations around the original position but
with increasing amplitude, and ending up in an instability. The restoring force has
been ‘too efficient’, and this phenomenon is thus rightly called overstability.

Another interesting subtlety, is that of σ-stability. As always in physics, what
is relevant is to compare processes with one another. In non trivial systems, many
phenomena are in competition, and an equilibrium may be in the absolute unstable,

5Note that we are only considering linear stability here, with infinitesimal displacements, so that
we do not consider possible finite jumps from various local minima of the potential.
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as described previously, but if the characteristic timescale of the instability is longer
than the other timescales of relevance in the problem, then this instability will not
have time to develop, and we would in that sense be dealing in practice with stability.
In thermonuclear confinement for instance, one is interested in equilibria stable only
long enough to obtain fusion. The σ in the expression ‘σ-stability’ corresponds to
the maximum instability growth rate one allows. This extension to the concept of
stability, of great importance for experimental setups, was introduced and formalized
in Goedbloed and Sakanaka (1974). See Sect. 6.5.3 of Goedbloed and Poedts (2004)
formore details, in particular on how the energy principle (cf. below) is thenmodified.

7.1.3 Stability: Formally

We are interested in the analysis of the evolution of linear perturbations, for which
various approaches are possible, as summarized in Fig. 7.5. The point is that depend-
ing on the aim of the study, one will not use the same tools. We may distinguish three
aims, namely determining:

Fig. 7.5 There are essentially two viewpoints to study oscillations and instabilities: One is based on
the concept of force and the other on energy. Depending on the amount of information one is looking
for, different approaches are appropriate (the three rows, corresponding to items (I), (II) and (III) in
the text). As indicated by the green frames, I will focus in this manuscript on the eigenvalue problem
approach in the force operator formalism, aiming at determining the spectrum {ω2} (adapted from
Fig. 6.16 of Goedbloed and Poedts 2004)

http://dx.doi.org/10.1007/978-3-319-61881-4_6
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(I) the full dynamics of the perturbations �ξ(�r , t),
(II) the growth rates of the various unstable modes, in a normal mode analysis, and

we will be particularly interested in the most unstable mode since it will be the
one dictating the fate of the system,

(III) stability criteria, to tell simply whether an equilibrium is stable or not.

These are ordered by decreasing amount of information, but also of difficulty. In this
Sect. 7.1.3 I am going to introduce these three points one after the other, presenting
them each time by first adopting the ‘force viewpoint’ (paragraphs (a)) and then the
‘energy viewpoint’ (paragraphs (b)). Among all these approaches, in this manuscript
I will focus on determining the spectrum {ω2} in the eigenvalue problem approach
of the force operator formalism i.e. on paragraph (II) (a) below, as indicated by the
green frames in Fig. 7.5.

7.1.3.1 Full Dynamics: �ξ(�r, t)

(a) Equation of motion Using the Lagrangian displacement vector in the set of
governing equations (7.2), the linearized momentum conservation has the form

ρ0∂
2
t
�ξ = �F

(�ξ
)

, (7.23)

where I will explicit and discuss the vector �F only in Eq. (7.29) of the next paragraph,
because in this manuscript we will not use the equation of motion in the form (7.23)
but in its temporal Fourier transform version (7.28). For now, let us only say that
the vector �F is interpreted as the resultant of the forces acting on the considered
volume element, i.e. that Eq. (7.23) is in essence Newton’s second law. This is no
surprise since it is a rewriting of the momentum conservation. However, the key and
subtle point here is that the force �F(�ξ) is expressed as a function of �ξ only, so that
Eq. (7.23) is seen as an equation on �ξ only, i.e. as a kind of wave equation. Also, �F is
now interpreted as an operator acting on �ξ, which is whywewill refer to this approach
as the force operator formalism, as opposed to the energy approaches making use of
quadratic forms.

(b) Hamilton’s principle The variational counterpart of the previous equation of
motion is the following linearized version of Hamilton’s principle (Goldstein 1980):
The evolution of the system from time t1 to time t2 through the perturbation �ξ(�r , t)
is such that the variation of the integral of the Lagrangian vanishes

δ

∫ t2

t1

Ldt = 0 (7.24)
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where L ≡ K − W , with the linearized kinetic energy

K
[ �̇ξ

]
= 1

2

∫

ρ0 �̇ξ∗ · �̇ξ dV (7.25)

and the linearized potential energy

W
[�ξ

]
= −1

2

∫
�ξ∗ · �F

(�ξ
)
dV . (7.26)

where the symbol ∗ denotes the complex conjugate. Deriving the Euler-Lagrange
equation by minimization leads to (7.23): The variational formulation and the dif-
ferential equation formulation are equivalent.

7.1.3.2 Eigenvalue Problem: Spectrum ω2 and Eigenfunctions ξ̂(�r)

(a) Normal mode analysis
Because the equilibrium coefficients are time independent, we may Fourier trans-

form Eq. (7.23) with respect to the time variable and consider normal mode solutions
of the form

�ξ(�r , t) = ξ̂(�r) eiωt . (7.27)

(Normal Modes)

The full equation of motion (7.23) then becomes the following vector eigenvalue
problem

−ω2ρ0 �ξ = �F
(�ξ

)
, (7.28)

(Vector Eigenvalue Problem)

where

�F
(�ξ

)
= −�∇ p1︸ ︷︷ ︸

pressure

+ �j1 × �B0 + �j0 × �B1︸ ︷︷ ︸
magnetic field

+
Cowling
︷︸︸︷
ρ1�g0 +

Jeans
︷︸︸︷
ρ0�g1︸ ︷︷ ︸

gravity

. (7.29)

(Force Operator)

First, notice that with Eq. (7.28), the link between the second and fourth row in the
table of Fig. 7.4 gets clear: The sign of ω2 dictates whether the force applied on the
displaced volume element is in the same or opposite direction as the displacement �ξ
itself.

Second, when expressed in terms of the primitive variables ρ1, p1, �j1, �B1 and �g1,
the right hand side is naturally interpreted as the resultant of the forces applied on the
volume element. It consists of three parts. The pressure part, which induces acoustic



7.1 Generalities 103

waves, due to the compressibility of the medium. The magnetic field part, which
modifies the behaviour of acoustic waves by inducing anisotropy, but also additional
pressure. It also gives rise to purelymagneticwaves, namedAlfvénwaves. Finally, the
gravitational part, which also modifies the behaviour of acoustic waves, and studying
precisely how is the main objective of this part of the manuscript. As highlighted
in Eq. (7.29) and anticipated page xxx, we will distinguish two contributions to this
gravitational part, namely what I will hereafter call

(i) the Cowling term ρ1�g0,
(ii) and the Jeans term ρ0�g1.
I will use this terminology because, in the stellar community, it is common to do the
so-called Cowling approximation (Cowling 1941) which consists in keeping only
the term ρ1�g0 out of the two gravitational terms. The Cowling term is the one which
may give rise to the Rayleigh-Taylor instability and to convection. In Cosmology,
on the contrary, it is often expedient to keep only the ρ0�g1. The Jeans term is the
one which may give rise to the Jeans gravitational instability, i.e. to gravitational
fragmentation, which is the very reason of the effort made in this manuscript to
explore it and understand it as well as possible in stratified media.

Third, Eq. (7.28) is now expressed as an eigenvalue problem (where ω2 is the
eigenvalue), so that the right hand side is now seen as a function of �ξ only. We
thus need to express all the primitive variables in terms of �ξ. We may do so using the
governing Eq. (7.2). It is in these forms that we are going to manipulate the equations
in the rest of this manuscript.

The linearized mass conservation gives

ρ1 = −�∇ ·
(
ρ0 �ξ

)
, (7.30)

(Density Perturbation)

our choice of closure relation gives

p1 = −c2a �∇ ·
(
ρ0 �ξ

)
, (7.31)

(Pressure Perturbation)

the linearized induction equation gives

�B1 = �∇ ×
(�ξ × �B0

)
, (7.32)

(Magnetic Field Perturbation)
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the linearized Ampère’s law gives

�j1 = �∇ ×
( �∇ ×

(�ξ × �B0

))
, (7.33)

(Current Density Perturbation)

and finally, inverting the linearized Poisson equation6 (7.5) we obtain

�g1 = G
∫

�∇ ·
(
ρ0 �ξ

) �r − �r ′

|�r − �r ′|3 d
3r ′ . (7.34)

(Gravitational Acceleration Perturbation)

We will discuss the last relation especially in section 7.3.

Tracking theMHDwaves In the plasma literature, it is shown that, when neglecting
the �g1 term i.e. in ideal MHD working in the Cowling approximation, Eq. (7.28)
describes threewavesonly7: the slowmagneto-acousticwave, theAlfvénwaveand the
fastmagneto-acousticwave.What happenswhen the �g1 term is taken into account?As
brieflymentioned inSect. 2.4, in theNewtonian framework consideredhere, gravity is
instantaneous and the linearized Poisson equation is an additional constraint, but not a
proper evolution equation. Therefore when considering the full system of equations,
not in the Cowling approximation, we do not expect additional waves (gravitational
waves as in a general relativistic treatment). We are thus going to track how the three
MHD waves are modified by gravity.

Road map In Sect. 7.2 we will focus on the magnetic terms of the force operator,
switching-off gravity, in order to get acquainted with the way plasma physicists ana-
lyze Eq. (7.28). Then, with this background, we will focus on the gravitational terms,
switching-off magnetic fields. First, in Sect. 7.3, we will discuss general features
of the eigenvalue problem in this case. Then, in Chap.8 we will explore fully this
problem in the particular case of a plane stratified structure. This will be physically
relevant for the modeling of the sheets of the cosmic web, but also it will turn out
to be methodologically absolutely indispensable because of the complexity of the
general problem. This work will ease the generalization to cylindrically symmetric
stratifications (filaments of the cosmic web) as discussed in Chap. 9. It will also show
the way to follow to combine magnetic fields and gravity, which is however left for
future work.

6To be complete, this expression contains too, cf. Sect. 7.1.3.2.
7It is so because we are dealing with a background state that is at rest. When adding flow, as
introduced in Chap.10, each of these three waves splits up into two, one backward and one forward.
And also, it can be shown that because we are adopting a Lagrangian description, in terms of the
displacement vector �ξ, we are not taking into account a seventh wave, namely the Eulerian entropy
wave, but which is marginal (ω2 = 0) in this context. For more details see Sect. 5.2 of Goedbloed
and Poedts (2004) and Sect. 13.1.3 of Goedbloed et al. (2010).

http://dx.doi.org/10.1007/978-3-319-61881-4_2
http://dx.doi.org/10.1007/978-3-319-61881-4_8
http://dx.doi.org/10.1007/978-3-319-61881-4_9
http://dx.doi.org/10.1007/978-3-319-61881-4_10
http://dx.doi.org/10.1007/978-3-319-61881-4_5
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Analogy with Quantum Mechanics There is a formal analogy between the analy-
sis of the MHD spectrum and that of quantum mechanical systems. It is beyond
the scope of this manuscript to go into details on it, but note that the force opera-
tor approach corresponds to the Schrödinger picture, with a description exploiting
differential equations based on the eigenvalue problem Hψ = Eψ, while the varia-
tional approach corresponds to the Heisenberg picture, with a description exploiting
quadratic forms based on the matrix elements of the Hamiltonian. This is the reason
why Schrödinger and Heisenberg are mentioned in Fig. 7.5. The interested reader
may have a look at Chap.6 of Goedbloed and Poedts (2004) for more information.
This analogy is also the root of the following crucial property.

Self-adjointness of the force operator: Eigenvalues ω2 are real A key property of
the force operator �F , or rather of ρ−1

0
�F , is self-adjointness. Formally, the operator

ρ−1
0

�F is said to be self-adjoint when

for all �ξ and �η,

∫

�η ∗ · �F
(�ξ

)
dV =

∫

�F (�η ∗) · �ξ dV (7.35)

where the symbol ∗ denotes the complex conjugate. As such, the origin of this defini-
tionmay seemobscure, but it is in fact natural when considering the fullmathematical
framework of linearized ideal MHD, discussing it in terms of Hilbert space, defining
an inner product and a norm for the MHD displacements, in analogy with Quan-
tum Mechanics, where the terminology ‘Hermitian’ is sometimes used instead of
‘self-adjoint’. The interested reader may have a look for instance at Sect. 6.2.2 of
Goedbloed and Poedts (2004). For our purpose here, we only need to keep in mind,
and benefit from, two points about this property: First, physically self-adjointness is
associated with energy conservation, and second, when ρ−1

0
�F is self-adjoint, then we

are guaranteed that the eigenvaluesω2 are real. This immensely reduces the difficulty
of the analysis, because the spectrum is then reduced to the real axis only. This is
why the ideal MHD spectrum, which we will discuss in Sect. 7.2, is represented as a
simple line in Fig. 7.6 below.

The fact that the eigenvalues ω2 are real remains true when adding gravity (e.g.
Cox 1980), which will greatly simplify the analysis in Sect. 7.3 and the following
chapters, and also when considering convection (9.2). However, when considering
resistivity (which is far beyond the scope of this work, so the reader is invited to delve
into Goedbloed et al. 2010, to learn about this aspect), ω2 is a complex quantity, so
that the spectrum has to be discussed in the full complex plane. The analysis then
involves many tools from the theory of functions of a complex variable, and is much
more elaborate than the present discussion, which constitutes the first, necessary,
step to go that far.

Finally, note that self-adjointness depends on the boundary conditions imposed on
the system. This fact is intuitive since even in idealMHDwhere no dissipation occurs,
energy may come in or out from the interfaces of the system, in which case energy
is not conserved. In Goedbloed and Poedts (2004), the authors present six different
models of plasmas: three relevant to laboratory plasmas and three others relevant to

http://dx.doi.org/10.1007/978-3-319-61881-4_6
http://dx.doi.org/10.1007/978-3-319-61881-4_6
http://dx.doi.org/10.1007/978-3-319-61881-4_9
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the astrophysical context. Each is characterized by different boundary conditions.
The simplest of them, called the ‘rigid walls’ model, consists in imposing that the
displacement field vanishes at the boundaries (cf. for instance Eq. (8.13) below). In
this case, it can be proved that the general force operator (7.29) is self-adjoint. To
lighten the discussion, we will consider those simple boundary conditions in this
manuscript.8

(b) Rayleigh-Ritz’s principle The energetic counterpart of the eigenvalue problem
approach with the force operator is the Rayleigh-Ritz’s principle. It may be stated as
follows. Eigenfunctions �ξ of the operator ρ−1

0
�F make the Rayleigh quotient

�
[�ξ

]
=

W
[�ξ

]

I
[�ξ

] (7.36)

stationary, and the eigenvalues ω2 are the stationary values of �, i.e. δ� = 0. Here

I
[�ξ

]
≡ 1

2

∫
ρ0 �ξ∗ · �ξ dV . The article of Hasan and Sobouti (1987) is an interesting

example of mode analysis using this principle in MHD.

7.1.3.3 Stability Criteria

(a) Marginal Equation Restricting ourselves to boundary conditions which leave
the force operator self-adjoint, we know that the eigenvalues ω2 are real. Therefore
the transition between stable and unstable regimes must occur when ω2 = 0. This
is called the marginal frequency. Setting ω2 = 0 in Eq. (7.28) yields the marginal
equation

�F
(�ξ

)
= �0. (7.37)

This equation should be seen as an equation on the governing parameters of the
system (external magnetic field applied, gravitational field in which the system is
embedded, etc.). Indeed, the idea is to find the set of parameters such that solutions
of (7.37) exist which satisfy the imposed boundary conditions. Then, since these
parameters correspond to the marginal frequency ω2 = 0, these parameters delimit
the stable and unstable regions in parameter space. A general criterion for stability is
thus obtained. For examples adopting this approach, see for instance Ledoux (1951)
and Miyama et al. (1987a).

8Finally, on the self-adjointness of the force operator, and thus on the reality of ω2, it is interesting
to note that some stability studies do report complex-valued ωs (e.g. Freundlich et al. 2014b, who
analyze self-gravitating, non-rotatingfilaments, linearizing the system of perturbed equations in
primitive variables). The origin of this complexity, whether physical or an artefact, in those cases
is unclear at this point, but may reside in the chosen formal approach and the assumptions made.

http://dx.doi.org/10.1007/978-3-319-61881-4_8
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(b) Energy principle Another approach to establish simple stability criteria is as
follows. If one can find a single displacement field �ξ such that

W
[�ξ

]
< 0, (7.38)

then the system is unstable, as illustrated on the right of Fig. 7.4. The important point
here is that we only need to find one particular function �ξ to conclude that the system
is unstable. Such a function is thus called a trial function. There is at the present no
general way to find such a function. However, an idea is for instance to notice that

the linearized potential energy W
[�ξ

]
given by (7.26) contains �∇ · �ξ terms, so that

considering an incompressible displacement field, for which this quantity vanishes,

W
[�ξ

]
greatly simplifies. Then sometimes relations on the governing parameters

which render W
[�ξ

]
negative appear clearly. A simple illustrative example of this

method can be found in Sect. 6.5.4 of Goedbloed and Poedts (2004). In practice, it
turns out that it is often much quicker to conclude on the instability of a given con-
figuration using the Energy principle, rather than through the study of the marginal
equation. Note however that, to prove that the system is stable, one would have to

prove that W
[�ξ

]
> 0 for all displacements �ξ.

I will not discuss further the energetic approach, since in the rest of this man-
uscript I will adopt the eigenvalue problem approach, looking for the spectrum of
the system, as highlighted in Fig. 7.5. But both viewpoints are important to keep in
mind, because they are complementary and both can be found in the literature (cf.
references mentioned in the introduction of Chap.7 for instance).

7.2 Ideal MHD

Let us now reveal the waves and instabilities contained in Eq. (7.28) when gravity is
switched-off to focus on magnetic fields.

7.2.1 Vector Eigenvalue Problem

In ideal MHD, without gravity, the force operator (7.29) reads:

�F
(�ξ

)
= −�∇ p1 + �j1 × �B0 + �j0 × �B1. (7.39)

Then, inserting these expressions in relation (7.28), we find that the vector eigenvalue
problem in ideal MHD has the following explicit expression:

http://dx.doi.org/10.1007/978-3-319-61881-4_6
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−ρ0ω
2�ξ = �∇

(
c2a �∇ ·

(
ρ0�ξ

))
+

( �∇ ×
( �∇ ×

(�ξ × �B0
)))

× �B0 +
( �∇ × �B0

)
×

( �∇ ×
(�ξ × �B0

))
.

(7.40)

(Vector Eigenvalue Problem—Ideal MHD)

This expression is quite involved, in the sense that it is composed of intertwined
�∇ operators and vector products which makes it pretty nonintuitive. However, it
remains in essence rather simple in the sense that this is just the expression of var-
ious geometric effects, because the magnetic field distinguishes the various spatial
directions, inducing anisotropy in the system, but it is not a conceptual complication.
What makes this eigenvalue problem even technically relatively simple is that the
force operator (together with reasonable boundary conditions) is self-adjoint as we
have seen above, but also linear (in �ξ) and differential. Both these properties con-
siderably reduce the difficulty of the analysis. As we will see in the next section,
when adding gravity in the system, the governing operator is not differential any-
more, but integro-differential. This MHD eigenvalue problem is also quite intricate
because it contains a huge amount of information. Indeed, a wave equation such as
(7.10) is a scalar equation, describing the evolution of scalar waves. Equation (7.40)
describes the evolution of a vector field, so that it contains also the information on
the polarisation of the waves (linear, circular) for instance.

Just like rotating an object enables to reveal parts of it which were initially out
of sight, reformulating a physics problem in various forms is most generally very
rewarding. In the present case, we are dealing with a vector eigenvalue problem. This
has the advantage of being linear in ω2, which is essential in demonstrating general
results such as the self-adjointess of the force operator. Also, in this form, each
term may be interpreted physically as a force in Newton’s second law, as the very
name ‘force operator’ reminds us. But this description has the disadvantage of being
vectorial, so that as such the various components of �ξ are described through their
complicated coupling. A first enriching way of reformulating the problem consists
in deriving from (7.40) an equation governing one of the components of �ξ only, say
ξx (in a Cartesian description, as below), and study it independently.9 The resulting
equation is called the MHD wave equation. As we will see, this transformation is
extremely valuable because the entire structure of the spectrum can be read in its
coefficients, while this is invisible in the vector formulation. Now, as we will see,
the cost of turning to a scalar (wave) equation, is that ω2 will be distributed all over
the coefficients in the equation. The problem will thus be reduced to a scalar but
non-linear eigenvalue problem.

9In this process, the other two components of �ξ can be expressed as functions of ξx only, so that
we may, if needed, recover the full expression of �ξ once the equation on ξx is solved. Therefore no
information is lost, so this can really be seen as a reformulation of the vector problem.
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7.2.2 Wave Equation

Since theworks Iwill present later ongravitationwill be in great part done considering
a planar stratification (Chap. 8), I will now detail the analysis of the MHD wave
equation in this geometry. In Sect. 9.1, we will discuss another one-dimensional
stratification, but that has a cylindrical symmetry. Here, the absence of curvature
effects greatly simplifies the analysis but keeps the essential of the physics.

Planar stratification Consider a medium that is stratified in one direction only, say
the x direction. This one dimensional stratification is assumed to be planar, hence
the use of cartesian coordinates x , y and z. The equilibrium density and pressure are
functions of x only:

ρ0 = ρ0(x) and p0 = p0(x). (7.41)

Let us consider amagnetic field confined to plane layers perpendicular to the stratified
direction x , but whose components vary along the stratification, namely

�B = By(x)ŷ + Bz(x)ẑ. (7.42)

Now, thanks to the translation invariance along the y and z directions,we can consider
plane waves in these directions, so that the most general expression of �ξ, from the
decomposition (7.27), is

�ξ =
[
ξ̂x (x) x̂ + ξ̂y(x) ŷ + ξ̂z(x) ẑ

]
ei(ky y+kz z−ωt). (7.43)

Quantities with a hat, other than unit vectors, depend on x only. Inserting this expres-
sion into (7.40), it is possible to derive an equation on the ξ̂x component only, the
scalar wave equation. Because the MHD part of the force operator is not the priority
of this manuscript but only its results matter here, I am not going to explicit this
derivation. We are anyway going to follow similar steps in Chap.8 so that this would
be redundant. The interested reader may find the MHD derivation in Sect. 7.3.2 of
Goedbloed and Poedts (2004).

First of all, let us define the two local (due to their x-dependence) speeds that
appear in the following analysis, respectively the Alfvén speed and the speed of
sound: {

b(x) ≡ B√
ρ0

c(x) ≡
√

γ p0
ρ0

.
(7.44)

Formally, they are the most natural speeds one can define on dimensional grounds,
given the physical parameters involved. Physically we are familiar with the speed
of sound, while the other one is the speed associated with the propagation of purely
magnetic waves, called Alfvén waves. They are analogous to the waves travelling
along guitar strings, where the magnetic field lines act as strings. In essence, the

http://dx.doi.org/10.1007/978-3-319-61881-4_8
http://dx.doi.org/10.1007/978-3-319-61881-4_9
http://dx.doi.org/10.1007/978-3-319-61881-4_8
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Alfvén speed is vectorial since �B is a vector, but given the stratification considered,
only this scalar Alfvén speed intervenes here.

Wave equation The wave equation, first derived10 by Goedbloed (1971), and which
we will hereafter refer to as theMHD wave equation, reads

(
N

D
ξ̂′
x

)′
+ Q ξ̂x = 0 (7.45)

(Wave Equation—Ideal MHD)

where the numerator N contains three continua of the spectrum {ω2} (the fast is
peculiar, cf. discussion below)

N (x;ω2) = ρ0(b
2 + c2)[ω2 − ω2

A(x)][ω2 − ω2
S(x)] (7.46)

with

⎧
⎪⎨

⎪⎩

ω2
A(x) = (ky By+kz Bz)

2

ρ0

ω2
S(x) = c2

b2+c2 ω
2
A

ω2
F (x) = ∞

(Alfvén continuum)
(slow magneto-sonic continuum)
(fast magneto-sonic continuum)

(7.47)
and the denominator D contains two turning point frequencies

D(x;ω2) = [ω2 − ω2
s0(x)][ω2 − ω2

f 0(x)] (7.48)

with

⎧
⎪⎪⎨

⎪⎪⎩

ω2
s0(x) = 1

2 (k2y + k2z )(b
2 + c2)

[

1 −
√

1 − 4c2
(k2y+k2z )(b

2+c2)2
ω2
A

]

(slow turning point)

ω2
f 0(x) = 1

2 (k2y + k2z )(b
2 + c2)

[

1 +
√

1 − 4c2
(k2y+k2z )(b

2+c2)2
ω2
A

]

(fast turning point)
(7.49)

and finally
Q(x;ω2) = ρ0(ω

2 − ω2
A). (7.50)

The explicit expressions (7.47) and (7.49) are given here only for the sake of
completeness. I will not discuss in this manuscript the details of the physics behind
these frequencies, but only make use of the techniques developed using them. The

10To be precise, in this article the author takes gravity into account, but in theCowling approximation
only, the discussion of which is left for the next chapter.
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Fig. 7.6 Typical structure of the ideal MHD spectrum without flow. The spectrum is confined
to the real axis, and composed of (i) three continuous spectra (slow, Alfvén and fast: the black
boxes) originating from genuine singularities in the wave equation, (ii) two ranges of turning point
frequencies (slow and fast: the gray boxes) originating from apparent singularities in the wave
equation, and (iii) a discrete spectrum (the various sets of crosses) originating from the boundary
conditions. The monotonicity (Sturmian or anti-Sturmian) of the discrete sub-spectra is revealed
by the oscillation theorem, which states that it is given by the sign of N/D in the wave equation
(upper line in the figure). Adapted from Fig. 7.18 of Goedbloed and Poedts (2004)

expressions which will matter for the following are that of the numerator (7.46) and
the denominator (7.48), independently of the full expressions of the frequencies they
contain.

Boundary conditions The differential Eq. (7.45) is of second order and thus solving
it requires specifying two boundary conditions. The simplest of boundary conditions,
called the ‘rigid walls’, consists in imposing that the displacement along x vanishes
at x = 0 and at the surface x = xt , that is

ξ̂x (0) = ξ̂x (xt ) = 0. (7.51)

As mentioned in Sect. 7.1.3, the self-adjointess of the force operator, and thus the
real or complex nature of the eigenvalues ω2, depends on the choice of boundary
conditions. The advantage of such simple conditions is that the force operator is
indeed self-adjoint.

7.2.3 Spectrum

It is out of the scope of this manuscript to delve into rigorous demonstrations about
the structure of the spectrum. Instead, I am now going to state the result and give
some of the key points that help getting a feeling of where it comes from.

The result: The ideal MHD spectrum may be represented by Fig. 7.6, i.e. it is con-
tained in the real axis, and composed of various continuous ranges of values (the
black and grey boxes) surrounded by discrete values (the crosses).

The ideas behind this result: First of all, as mentioned in Sect. 7.1.3, the fact that
the spectrum belongs to the real axis rather than the full complex plane, and is thus
simply represented as a line, is due to the self-adjointness of the force operator, which
guarantees that the eigenvalues ω2 are real.
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The rest of the structure essentially comes from two key properties of differential
equations: (i) Their singularities, giving rise to the continuous ranges, and (ii) the
imposed boundary conditions, giving rise to the discrete parts.

7.2.3.1 Singularities

In the theory of ordinary differential equations in the complex plane C (e.g. Bender
and Orszag 1978), the points of C are classified into ordinary points, at which the
equation’s coefficients are analytic functions, and singular points, at which some
coefficient has a singularity. Various types of singularities exist, the precise study of
which is crucial because it indicates the appropriate technique to use to analyze the
nature of the solution around such points. In the context of stability analysis, this
gives various stability criteria. For the purpose of the present discussion, I will just
mention the following intuitive argument.11 Consider a general nth order ordinary
differential equation

n∑

0

ai (x)y
(i)(x) = 0. (7.52)

At a point xs where the coefficient of the highest order term vanishes (an(xs) = 0),
this equation becomes ‘locally’ of order (n − 1). Similarly, at a point xs where the
coefficient of the lowest order term vanishes (a0(xs) = 0), the order of the equation
also decreases by one, because it then becomes an equation in the variable y′, of the
(n − 1)th order. Now, we may also encounter situations where singular points exist
such that ai (xs) → ∞ for some i ∈ {0..n}. Obviously, such points deserve special
attention too. Thus, in other words, it is intuitive that the solutions of a differential
equation are fundamentally different if the equation is solved on an interval [a, b]
on which the coefficient of either the highest or the lowest order term vanishes, or at
least one of the coefficient diverges at one point (at least) in [a, b].

The procedure to analyze wave equations such as (7.45) is thus to examine their
singularities. The factors N and D defined respectively in (7.46) and (7.48) have
clearly been written in a form that optimizes this procedure.

Genuine singularities: The continuous spectrum Eq. (7.45) becomes singular
(N → 0) when ω2 → ω2

A(x) or ω2 → ω2
S(x). Hence solutions with eigenval-

ues ω2 ∈ {ω2
A(x)} and ω2 ∈ {ω2

S(x)} have ‘something particular’. Let me mention
that it can be shown that they correspond to solutions that are non square-integrable.
The slowmagneto-sonicω2

S(x) and theAlfvénω2
A(x) frequencies are thus called gen-

uine singularities, and the ranges of frequencies ω2
A(x) and ω2

S(x) constitute what is
called the continuous spectrum. For completeness, we will admit that there is in fact
a third continuum, that is ‘formal’ in the sense that the values of its frequencies are
infinite. This is the fast magneto-sonic continuum mentioned in (7.47).

11As the following of the manuscript will show, determining the nature of the singularities will be
somewhat subtle.
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Apparent singularities: Turning point frequencies Similarly, ‘something particu-
lar’ clearly happens (D → 0) when ω2 → ω2

s0(x) or ω2 → ω2
f 0(x). It can be shown

that solutions with eigenvalues ω2 ∈ {ω2
s0(x)} and ω2 ∈ {ω2

f 0(x)} present cancella-
tions in their series expansion which leaves them finite, so that these solutions are
fundamentally different from those belonging to the continuous spectrum. Therefore,
the frequencies ω2

s0(x) and ω2
f 0(x) are called apparent frequencies, by opposition to

the genuine ones, and the ranges {ω2
s0(x)} and {ω2

f 0(x)} are not continuous spectra but
are called ranges of turning point frequencies. The origin of the latter denomination
is soon going to be clear (cf. paragraph (ii) below): They are zones in the spectrum
separating the three continuous spectra, because of the following ordering12 which
is true at each position in the plasma slab:

0 ≤ ω2
S(x) ≤ ω2

s0(x) ≤ ω2
A(x) ≤ ω2

f 0(x) ≤ ω2
F (x) = ∞, (7.53)

They are also delimiting different monotonicities in the discrete spectrum (i.e. anti-
Sturmian behaviour on their left, Sturmian on their right).

7.2.3.2 The Discrete Spectrum: Boundary Conditions

The discussion above did not require specifying the boundary conditions with which
the differential equation is being solved. In physics, boundary conditions are para-
mount. The best known and simplest example is that of a vibrating string.

Consider a string that is being shaken. Intuitively, we know that the perturbation
will travel along the string, and will be reflected back once it meets a fixed point.
If both ends of the string are fixed points, the travelling wave will interfere with its
counterpropagating sibling so that only perturbations whose wavelength is a multiple
of the internode distancewill remain andwill form a standingwave. A very important
feature is that the frequency at which each mode oscillates is directly linked to the
number of nodes the standing wave contains, and in particular in this case the larger
the number of nodes, the higher the frequency of the oscillation. This increase of the
frequency with the number of nodes is called a Sturmian behaviour.

Formally, what happens is that the differential equation governing the oscillations
of the string is a wave equation. One can solve it to derive its general solution, but
not all these solutions satisfy the required boundary conditions. Therefore only a
certain set of solutions is relevant to the physical problem posed, and thus only cer-
tain frequencies may exist in the system. More generally, the study of the behaviour
of solutions of a differential equation with respect to the parameters present in its
coefficients belongs to the realm of spectral theory in Mathematics. Let us have a
glimpse on an important example, namely that of a so-called Sturm-Liouville prob-
lem.13 It is fundamental because it is simple, omnipresent in physics in general, and
also because basically the crux of the present study is to generalize it to the more

12This ordering also justifies the terminology ‘slow’ and ‘fast’ for the magneto-acoustic waves.
13This is at the origin of the terminology ‘Sturmian’ mentioned.
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Fig. 7.7 Sturm’s oscillation theorem: The larger the parameter α in the Sturm-Liouville equation
(7.54), the faster the solution y oscillates

complicated differential equations we are going to face. Consider the following real,
second-order non-singular differential equation, called a classical Sturm-Liouville
equation (e.g. Al-Gwaiz 2008):

L[y;α] = 0 (7.54)

where

L[y;α] ≡ d

dx

[

P(x)
dy

dx

]

− [Q(x) − αR(x)]y. (7.55)

The parameter α is called the eigenvalue of the differential operator L , and the
functions P and R are assumed to be strictly positive, ensuring in particular that this
equation is non-singular. The domain associated with this equation is the interval
a ≤ x ≤ b, and the boundary conditions are

y(a) = y(b) = 0. (7.56)

Under these assumptions, the following theorem can be demonstrated:
Sturm’s oscillation theorem
Let y1 and y2 be two functions satisfying respectively L[y1;α1] = 0 and L[y2;α2] =
0, and suppose that both vanish at a point x = x0. Let x1 be the zero of y1 closest to
x0. Then, if α2 > α1, then y2 vanishes at a point x2 < x1. The function y2 is then
said to oscillate faster.

This theorem is illustrated in Fig. 7.7. Now, if x0 and x1 correspond to the bound-
aries a and b on which the boundary conditions are imposed, thenα1 is an eigenvalue
for instance. Thus, it is clear from this theorem that, the larger the eigenvalue, the
more nodes the eigenfunction possesses. Such a behaviour is called Sturmian. In
problems in which the opposite is true, i.e. when the eigenvalue is smaller as the
number of nodes increases, the behaviour is called anti-Sturmian.

Having this in mind, let us reinspect the wave Eq. (7.45). It looks like the Sturm-
Liouville equation (7.54), because it is the same differential operator. However the
eigenvalue α in (7.54) appears only linearly, while the eigenvalue ω2 in (7.45) is dis-
tributed throughout the coefficients in a much more complicated, non-linear manner!
For this reason, the idealMHD eigenvalue problem is often referred to as a non-linear
Sturm-Liouville problem. An important step forward has been made by Goedbloed
and Sakanaka (1974) who generalized Sturm’s oscillation theorem to the far more
general MHD eigenvalue problem. It may be stated as follows:
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Goedbloed-Sakanaka’s oscillation theorem
If x0 and x1 are two consecutive zeros of the function ξ1 satisfying the MHD wave
Eq. (7.45) for ω2 = ω2

1, then the solutions ξ2 of the MHDwave equation for ω2 = ω2
2

oscillate faster than ξ1 if ω2
2 > ω2

1 and N/D > 0 (Sturmian), and slower if N/D < 0
(anti-Sturmian).

This is a very general and non trivial result. It shows how the gaps between the
genuine and apparent singularities in the spectrum (the black and grey boxes in
Fig. 7.6) are filled. It was not obvious at all from the intricate distribution of the
eigenvalue parameter ω2 in the MHD wave equation that these various gaps would
be filled by discrete sets of eigenvalues that are monotonic (i.e. either Sturmian or
anti-Sturmian), and above all that the monotonicity is simply directly given by the
sign of N/D, as illustrated by the upper line in Fig. 7.6. We could not hope for a
simpler result, which makes it so powerful. The collection of these discrete sets of
eigenvalues is called the discrete spectrum.

All these results belong to the wide field of spectral theory in Mathematics.
However, so far, I have not found in the literature references that could general-
ize Goedbloed-Sakanaka’s oscillation theorem for the fourth order wave equations
we will be dealing with in the next chapter, explicited in Sect. 8.2.4. Examples of
papers that deal with the stability of spherically symmetric stellar equilibrium mod-
els with respect to small adiabatic Lagrangian perturbations from the mathematical
point of view are Beyer (1995) and Beyer and Schmidt (1995), which is the closest
to the question of interest in this manuscript that I have found. The authors say that
they are the first in the mathematics community to work on these aspects.

7.2.4 Stability Analysis

This spectral theory approach is not only crucial to gain a fundamental understanding
of the structure of the spectrum per se, but it is also of practical interest, fortunately.
Powerful tools to study the stability of a system from a wave equation such as (7.45)
have been developed. For instance, the point in identifying singularities such as those
mentioned above, is that it provides us with the physical locations where it is relevant
to perform a local analysis. Indeed, in a non-singular differential equation, the whole
solution is fully constrained by the boundary conditions imposed on the edges of
the interval on which we are solving it, while on the contrary, positions at which
a singularity occurs, i.e. points xs satisfying ω2

S(xs) = ω2 or ω2
A(xs) = ω2 in the

case of Eq. (7.45), split the interval into two independent parts. The stability of the
system then depends on what is happening locally at position xs . The procedure
consists in performing a Frobenius expansion (Bender and Orszag 1978) around
those points. This may provide local stability criteria such as Suydam’s criterion for
instance (Suydam 1958).

Another key information provided by the details of the spectrum, i.e. understand-
ing it up to the monotonicity of the discrete spectrum, is to identify the fastest grow-
ing unstable mode, which is the one that will in principle determine the fate of the

http://dx.doi.org/10.1007/978-3-319-61881-4_8
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system. In the present ideal MHD case, the ordering (7.53) tells us that all singu-
larities are positive. Therefore the unstable part of the spectrum is only discrete. It
also tells us that the continuum closest to zero, i.e. to marginal stability where the
transition from stability to instability occurs, is the slow continuum. And finally,
thanks to the Goedbloed-Sakanaka theorem, we know that the discrete modes on the
left of that continuum are Sturmian. Therefore, we know that the fastest growing
unstable mode, if it exists, is the n = 1 of the discrete sub-spectrum associated with
the slow continuum. It is represented by the little cross on the far left of the spectrum
in Fig. 7.6.

Finally, expliciting thewave equation as in (7.45) also enables us to study the short-
wavelength waves by deriving local dispersion relations. I will detail this approach
in Sects. 8.1.4 and 8.2.6 of Chap.8.

7.3 Gravitation

InSect. 7.2wehave learnt how to analyze the equation ofmotion (7.28)whenpressure
and magnetic fields are present. In the same lines let us now reveal the waves and
instabilities contained in Eq. (7.28) when the magnetic field is switched-off to focus
on gravity, which is the heart of our concern.

7.3.1 Vector Eigenvalue Problem

Let us now consider the force operator (7.29), this time turning gravity back on and
switching off magnetic fields, namely

�F(�ξ) = −�∇ p1 + ρ1�g0 + ρ0�g1. (7.57)

With expressions (7.30) of ρ1, (7.31) of p1 and (7.34) of �g1, we may express it
explicitly in terms of �ξ, so that from now on, instead of the MHD vector eigenvalue
problem (7.40), we will focus on the gravitational vector eigenvalue problem

−ρ0ω
2 �ξ = �∇

(
c2a �∇ ·

(
ρ0 �ξ

))
− �∇ ·

(
ρ0 �ξ

)
�g0 + ρ0G

∫

�∇ ·
(
ρ0 �ξ

) �r − �r ′

|�r − �r ′|3 d
3r ′ .

(7.58)

(Vector Eigenvalue Problem—Full Gravity)

In the following, I will call ‘Full Gravity’ cases in which both the Cowling term
ρ1�g0 and the Jeans term ρ0�g1 are taken into account, as opposed to the Cowling
approximation in which the Jeans term is neglected, or to the Jeans swindle in which
the Cowling term is set to zero.

http://dx.doi.org/10.1007/978-3-319-61881-4_8
http://dx.doi.org/10.1007/978-3-319-61881-4_8
http://dx.doi.org/10.1007/978-3-319-61881-4_8
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The eigenvalue problem (7.58) looks pretty involved per se. The MHD case gave
the same impression, but we then got the pleasant surprise of ending up with a wave
equation which was not obscure at all and rather compact, from which the spectrum
could be read directly. We are thus all the more encouraged to look for the wave
equation corresponding to the above gravitational vector eigenvalue problem.

As for the MHD case, the force operator is linear in �ξ, but it is now integro-
differential while it was only differential before. Similar non local wave equations
appear for example in the domain of continuum mechanics when treating deforma-
tions with discontinuities, especially fractures, leading to an approach called peri-
dynamics. The peridynamic theory is based on integral equations. For recent math-
ematical results on this, see e.g. Beyer et al. (2016). Here, because of the integral
part in the vector eigenvalue equation, in order to derive the corresponding scalar
wave equation, we will have to differentiate, and not only combine, as in the MHD
case, the various components of the vector eigenvalue problem. For this reason, the
differential wave equation on ξ̂x (planar case) or Rξ̂R (cylindrical case) will turn out
to be of fourth order.

Now, working in the Cowling approximation consists in getting rid of the term
which contains the integral, so that the force operator becomes differential again,
and the wave equation in this case is of second order only, as in ideal MHD, and with
much simpler coefficients than in the full gravity case, as we will see in Chap. 8. For
this reason, working in the Cowling approximation greatly simplifies the analysis.
This will be very useful for our purpose, because it will be simple enough for some
exact solutions to be found, which I will then use as the starting point to solve the
full problem perturbatively.

However, we must be cautious with this approximation, because in a sense it
misrepresents the problem. Indeed, as we have seen, a particularly important feature
of a differential equation is the coefficient in front of its highest order term. But since
in the Cowling approximation we are eliminating the highest order term, by going
from a fourth to a second order equation, we are necessarily ‘qualitatively’ altering
the spectrum. In fact, in Goedbloed et al. (2010), the authors study the spectrum of
inhomogeneous plasmas, with resistivity, i.e. beyond the ideal MHD case mentioned
above. The outcome is that resistivity increases the order of the wave equation, just
like gravity does for us here, so that the singularities due to the vanishing of the
coefficients in front of the highest derivatives disappear. The consequence is that the
continua split up into discrete modes. The same may also happen when generalizing
the ideal MHD spectrum by including gravity, but only by doing it fully, and not only
in the Cowling approximation. Finally, note another qualitative difference appearing
in this approximation: Given the order of the wave equations, the full gravity case
will require four boundary conditions while in the Cowling approximation only two
are needed.

http://dx.doi.org/10.1007/978-3-319-61881-4_8
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7.3.2 Cowling Versus Jeans

Since the Jeans term is the one that significantly complicates the analysis, it is legiti-
mate to try andfind a criterion, hopefully simple, to determine inwhich configurations
the Jeans term is negligible, and thus the simple analyses and results obtained in the
Cowling approximation are valid. To do so, let me first stress what is really meant
by ‘Cowling approximation’.

What is meant by ‘Cowling approximation’ In the literature, it is always written
that the Cowling approximation consists in neglecting the perturbation of the grav-
itational potential �1. I find important to emphasize that just saying so is a little
short cut, because implicitly the authors have in mind that the Cowling approxi-
mation in fact consists in neglecting �1 in the linearized momentum conservation
equation. Indeed, the stage in the calculation at which we set �1 to zero matters. For
example if we set �1 = 0 in Eq. (7.20) (and use the unperturbed Poisson equation
��0 = 4πGρ0), we obtain:

∂2
t ρ1 − �∇ρ1 · �∇�0 − 4πGρ0ρ1 − �p1 = 0, (7.59)

while if we first use the linearized Poisson equation��1 = 4πGρ1 and then neglect
φ1 (and use the unperturbed Poisson equation), we obtain

∂2
t ρ1 − �∇ρ1 · �∇�0 − 8πGρ0ρ1 − �p1 = 0, (7.60)

which brings a factor 2 of difference in the third term. This example is also the
opportunity to make the following comments. First, this reminds us that the Cowl-
ing approximation is in essence a(n arbitrary) truncation in the information we are
carrying, and not a certain regime of the dynamics. Also, the factor 2 here is not
meaningless. In fact, it keeps appearing in the calculations, prosaically as 1+1 = 2,
translating the fact that the equilibrium and the linearized Poisson equations are for-
mally exactly the same. In practice, this may be less benign than it looks, because
it sometimes brings in confusion when one performs the calculations trying to track
the separate role of the Cowling and the Jeans terms (cf. the discussion with the εC
and εJ parameters in Sect. 8.3), or may even turn out to be misleading when one tries
to recover results derived in the Jeans or Cowling approximations for consistency
checks.

Cowling Versus Jeans Let us discuss two points that will help us get an intuition of
where and when the Cowling or Jeans terms prevail.

First, an intuitive discussion about the domain of validity of the Cowling approx-
imation can be found for example in Cox (1980). The argument simply consists in
saying that Fourier transforming the linearized Poisson equation on the potential, i.e.
replacing the Laplacian � by −k2, where k is the wavenumber, we find that �1 is

http://dx.doi.org/10.1007/978-3-319-61881-4_8
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proportional to k−2 and thus that �1 goes to zero as k goes to infinity.14 The author
then concludes that the Cowling approximation should be a good approximation for
‘high order modes’, i.e. for perturbations of small wavelength. This is indeed what is
observed in numerical resolutions of the full system of equations in stellar physics.

Another fact stemming from the formal identity of the equilibrium and the per-
turbed Poisson equations is that the vector �g0 may be written like �g1 in the integral
form (7.7), by replacing subscripts 1 by subscripts 0. Therefore, another way of
expliciting the force operator (7.57) is

�F = −�∇ p1 − G
∫

[ρ0(�r ′)ρ1(�r)︸ ︷︷ ︸
Cowling

+ ρ0(�r)ρ1(�r ′)
︸ ︷︷ ︸

Jeans

] �r − �r ′

|�r − �r ′|3 d
3 �r ′. (7.61)

This form is very interesting because it exhibits the very different nature of the Cowl-
ing and Jeans terms, and helps giving a hint of their ordering for a given equilibrium
density profile and a given density perturbation. For instance, we see that at a given
position �r , whatmatters in theCowling term is thewhole equilibriumprofile ρ0 (since
it is integrated over) but only the local density perturbation ρ1. It is the precise reverse
for the Jeans term, so that for spatially rapidly varying perturbations, the alternance
of positive and negative values of ρ1(�r ′) in the integral may render the Jeans term
neglible. This thus exhibits the fact that the Jeans term will play a role essentially
for long spatial extent perturbations. In directions in which the perturbation may be
Fourier transformed, namely y and z in the planar case considered in Chap.8, this
amounts to long wavelength perturbations. For directions with stratification, x in the
planar case, this amounts to saying that we do not expect instability in this direction
for short perturbations,15 but that we may find instabilities when considering the full
general perturbations.

Now, my ambition is to determining the full spectrum of the force operator (7.29),
i.e. that I would like to generalize Fig. 7.6 by taking gravity fully into account. The
first step, that we are currently undertaking, is to determine the equivalent of Fig. 7.6
without magnetic field. To do so, in light of the MHD case, I have derived the wave
equation corresponding to (7.58), in a planar and then in a cylindrical stratification.
I will expose the details of these calculations in Chap. 8 and briefly show my results
in Chap.9.

14To be a little more precise, because his discussion happens in the context of stellar pulsations, Cox

(1980) shows that |�1| ∝
[
k2 + l(l+1)

r2

]−1
, where k is the radial wavenumber and l is the spherical

harmonic order, so that in spherical systems, what is meant by ‘high order mode’ is large k and/or
large l.
15Therefore we do not expect WKB dispersion relations to reveal instabilities in the directions of
stratification.

http://dx.doi.org/10.1007/978-3-319-61881-4_8
http://dx.doi.org/10.1007/978-3-319-61881-4_8
http://dx.doi.org/10.1007/978-3-319-61881-4_9
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Chapter 8
Stability of Cosmic Walls

The purpose of this chapter is to study the competition between pressure and gravity
in the evolution of perturbations in a planar stratification, because it is relevant to
study the stability of cosmic walls. I also decomposed the investigation of the eigen-
value problem (7.58) by first focusing on a planar stratification because curvature in
cylindrical symmetry, relevant for cosmic filaments, adds a couple more subtleties
that are all the better figured out once the planar case is clear. We will regularly focus
on two particular planar stratifications (cf. Chap.6), namely a fluid embedded in a
uniform gravitational field, essentially because it will turn out to be a non-trivial sim-
ple example very convenient for the calculations and constituting an interesting first
approach to model some environments of physical interest, but also a self-gravitating
slab, relevant to model cosmic walls.

We will proceed as follows. First we will study the effect of the background strat-
ification on perturbations, by studying the spectrum in the Cowling approximation.
Then we will include the effect of perturbations on the background itself by consid-
ering both the Cowling and Jeans terms in the force operator, with the aim of tracking
gravitational fragmentation. We will explore this ‘full gravity’ case in two ways: first
by deriving the wave equation and then by rewriting the equations matricially.

8.1 In the Cowling Approximation

Let us now work in the Cowling approximation and go through the derivation of the
wave equation. We will solve the problem exactly, i.e. exhibit the full spectrum, in
the case of a fluid embedded in a uniform gravitational field and in the case of a
self-gravitating slab.

© Springer International Publishing AG 2017
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124 8 Stability of Cosmic Walls

8.1.1 Vector Eigenvalue Problem

Without magnetic field, in the Cowling approximation, the force operator (7.29)
reads:

�F
(�ξ
)

= −�∇ p1 + ρ1�g0 (8.1)

and the vector eigenvalue problem (7.58) becomes

−ω2ρ0 �ξ = �∇
(
c2a �∇ ·

(
ρ0 �ξ
))

− �∇ ·
(
ρ0 �ξ
)

�g0 . (8.2)

(Vector Eigenvalue Problem—Cowling Approximation)

8.1.2 Wave Equation

Planar stratification As in the previous chapter, thanks to the translation invariance
along y and z, we can consider plane waves in these directions, so that the most
general expression of �ξ is in principle given by (7.43) again. However now, contrary
to themagnetic case before in which �B was inducing a difference between the y and z
directions, in the present case there is no preferred horizontal direction in the system,
since gravity is in the x direction (it is precisely the source of the stratification).
Therefore there is no loss in generality if we rotate the coordinate system in order to
take kz = 0. We will thus consider from now on

�ξ =
[
ξ̂x (x) x̂ + ξ̂y(x) ŷ + ξ̂z(x) ẑ

]
ei(ky y−ωt). (8.3)

Wave equationOneway to continue would be to directly insert this expression in the
vector eigenvalue problem (8.2) and combine the components to find the equation
on ξ̂x only. Now in fact, it will be very convenient to work with the variable

ψ ≡ ρ0ξ̂x (8.4)

rather than ξ̂x , and most importantly, in order to keep track of the physical meaning
of each equation, let us instead start one step backwards, as follows.

With the expression (8.3) of the displacement vector, the linearized mass conser-
vation (7.30) reads

ρ1 = ρ̂1(x) e
i(ky y−ωt) (8.5)

http://dx.doi.org/10.1007/978-3-319-61881-4_7
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where
ρ̂1(x) = −ψ′ − ρ0iky ξ̂y . (8.6)

Quantities with a hat, other than unit vectors, depend on x only. Similarly, the com-
ponents of the linearized momentum conservation ρ0∂t �v1 = −ω2ρ0 �ξ = �F with the
force operator (8.1) read

⎧⎪⎨
⎪⎩

−ρ0ω
2ξ̂x = −c2a ρ̂

′
1 + ρ̂1(ĝ0 − (c2a)

′)
−ρ0ω

2ξ̂y = −ikyc2a ρ̂1
−ρ0ω

2ξ̂z = 0.

(8.7)

Let us consider ω2 �= 0. I will discuss the physical interpretation of this in the para-
graph ‘Taking a little hindsight’ below in this section. The third equation above states
that ξ̂z = 0, which is consistent with the fact that we rotated the axes for the dynam-
ics to occur only in the x and y directions. Now, combining (8.6) and the second
equation of (8.7), we can isolate ρ̂1 in order to express it as a function of ψ only.
This results in

ρ̂1 = − ω2

ω2 − ω2
y

ψ′, (8.8)

where we introduced the frequency

ω2
y(x) ≡ k2yc

2
a(x) (8.9)

which corresponds to the Lamb frequency in stellar physics. Clearly, in this expres-
sion, we have assumed ω2 �= ω2

y . This is done in the same spirit as in the ideal MHD
case detailed in Sect. 7.2, in which we first derived ‘carelessly’ the wave equation
(7.40), and only later discussed the singularities that appear for particular values of
ω2. Also, we remind the reader that although the y direction here seems to play,
through ω2

y , a particular role compared to z, this is simply due to the choice of coor-

dinates, as stated earlier in the expression of �ξ: what physically matters here is that
the y direction corresponds to a direction transverse to the stratification.

Finally, we may insert the expression of ρ̂1 from (8.8) into the first equation of
(8.7) to get the equation governing ψ:

ψ′′ − 1

c2a

(
g0 − ω2(c2a)

′

ω2 − ω2
y

)
ψ′ + ω2 − ω2

y

c2a
ψ = 0. (8.10)

From the definition (8.4) of ψ, we may finally obtain the equation governing ξ̂x .
Using the hydrostatic equilibrium relation ρ0g0 = c2aρ

′
0, we may even rewrite it in

the same form as the MHD wave equation, namely

http://dx.doi.org/10.1007/978-3-319-61881-4_7
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(
N

D
ξ̂′
x

)′
+ Q ξ̂x = 0 (8.11)

(Wave Equation—Cowling Approximation)

where here ⎧⎨
⎩

N (x) = c2aρ0
D(x;ω2) = ω2 − ω2

y

Q(x;ω2) = ρ0 + (
c2aρ

′
0

D )′ − g0ρ
′
0

D .

(8.12)

Note that ifwewere looking for the full expression of �ξ (e.g. if boundary conditions
were defined on other components than the x one, or if we wanted at the end the full
velocity vector), then once we have solved the equation for ψ, as in the two examples
below, we may use the second equation of (8.7) together with (8.8) to deduce ξ̂y . As
for the z component, it is simply equal to zero here by construction.

Boundary conditionsAs discussed in Sect. 7.2.3, the choice of boundary conditions
is crucial as they strongly affect the discrete spectrum and thus the possible insta-
bilities in the system. A thorough discussion of this is left for future work. For a
discussion in the stellar case, see Cox (1980) and Smeyers and Van Hoolst (2010)
for instance, and for models suited to other astrophysical contexts, see Sect. 4.6.3 of
Goedbloed and Poedts (2004) for instance. Let us here consider the simplest, ‘rigid
wall’ conditions

ξ̂x (0) = ξ̂x (xt ) = 0 (8.13)

where x = 0 corresponds to the center of the slab, and x = xt corresponds to its
thickness (in this case, a truncated thickness, because the exponential atmosphere
has an infinite extent in principle—see Chap. 6). For smaller and smaller wavelength
perturbations, boundary conditions matter less and less, and solutions can then be
taken as plane-wave like (cf. Sect. 8.2.6).

Taking a little hindsight This is an appropriate moment to assess the scope of what
we are describing in this chapter, by anticipatingworks that I will mention in Chaps. 9
and 10.

Let us look at the eigenvalue parameter in Eq. (8.11). Only ω2 appears, and not
ω. This comes from the fact that we do not consider any flow here (�v0 = �0). Indeed,
for that reason, there is no distinction between backward and forward directions, so
that all waves are degenerate. Backward and forward waves are undistinguishable,
which is at the origin of the squaring of ω’s (Goedbloed et al. 2010).

Also, recall that to derive Eq. (8.11), we have assumed ω2 �= 0. The solutions we
are then getting, namely the discrete spectrum (8.23) or (8.32) below, correspond
to acoustic waves (called p-modes in the stellar physics community). But the ω2 =
0 modes are physically important: they are modes driven by buoyancy. They are
vanishing here only because we deliberately ‘switched off’ convection through our
assumption on the perturbed fluid (cf. Sect. 9.2). Once we modify this assumption,

http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_4
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http://dx.doi.org/10.1007/978-3-319-61881-4_10
http://dx.doi.org/10.1007/978-3-319-61881-4_9
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the dependence inω2 in Eq. (8.11) is more involved, and the quantization imposed by
boundary conditions results in a quadratic equation in ω2 rather than linear, so that
solutions similar to (8.23) and (8.32) remain (p-modes, but modified by buoyancy),
but the additional solution becomes non zero, corresponding either to g-modes in the
stable case, or convection in the unstable case.

8.1.3 Spectrum

Let us now study the spectrum. We will obtain the equivalent of Fig. 7.6 but for
this hydrodynamical situation in which we have made the Cowling approximation.
We are seeking two things: (i) The singularities, which give rise to the continuous
spectrum and the turning points ranges, and (ii) the discrete spectrum.

8.1.3.1 Singularities

What are the singularities of the wave equation (8.11) and of which nature are they?

Naïve answers First, based on the argument that I presented about the general dif-
ferential equation (7.52), which states that the points where the coefficient of either
the lowest or highest order term vanished were key, it is tempting to say that the
wave equation (8.10) contains ω2

y as an apparent singularity because it is present on
the lowest order term. However, one may argue that in this equation when ω2 → ω2

y ,
the coefficient in front of ψ′ diverges…It is then tempting to first multiply the wave
equation (8.10) by (ω2 − ω2

y)
2 in order to get rid of all the denominators, and then,

observing that the highest order coefficient is proportional to ω2 − ω2
y , conclude that

the frequency ω2
y is in fact genuine…And the same reasoning can be applied with

Eq. (8.11).
Second, another similar observation could bemade. From the previous derivation,

one may easily obtain an equation on ρ1 rather than on ψ, and deduce the following
wave equation:

ρ̂′′
1 +

(
2
(c2a)

′

c2a
− g0

c2a

)
ρ̂′
1 + ω2 − ω2

y + (c2a)
′′ − g′

0

c2a
ρ̂1 = 0. (8.14)

It is now very tempting, in view of the lowest order coefficient, to conclude that there
is only one singularity, the frequency ω2

y − (c2a)
′′ + g′

0, and that it is apparent.
Consequence: Depending on how we write the wave equation and with which

variable, we seem to be lead to different conclusions…

http://dx.doi.org/10.1007/978-3-319-61881-4_7
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What is happening? This remark is the opportunity to warn the reader about two
very important aspects.

First, the choice of variable (here ψ, ξ̂x or ρ1) is not without significance. Indeed,
the operator intervening in the eigenvalue problem formulated in one or the other
variable is different, therefore the corresponding spectrum is not necessarily the same
for each of them. I will come back to this point in Sect. 9.3.

Second, fortunately Goedbloed and Poedts (2004) have already treated this ques-
tion, i.e. they studied theMHDwave equation, as detailed in the previous section, but
they also considered gravity, in the Cowling approximation only though, as we are
doing in this section. We may therefore take advantage of their works for the present
question. The outcome is that they show that ω2

y remains the fast magneto-acoustic
apparent frequency. The ideal MHD singularities are unaffected by gravity, in the
Cowling approximation. The point I want to stress here is that the simple corre-
spondences ‘numerator vanishes ↔ genuine singularity’ and ‘denominator vanishes
↔ apparent singularity’ is proper to the MHD wave equation (7.45) written in the
Sturm–Liouville form only. Now, the aim of the present work is to study how gravity
modifies the spectrum beyond the Cowling approximation. As we will see, the wave
equation will not be of the simple Sturm–Liouville form. For this reason, at this stage
of my investigations, I shall be cautious when drawing conclusions about the nature
of the singularities that will appear in the complicated wave equation we will obtain.

Experience gained (a) Which variable? In this manuscript, I aim at generalizing the
MHD spectrum detailed in Sect. 7.2. Therefore I will focus on the equations gov-
erning the variable �ξ and its components. However, in the hydrodynamical case, the
variable ψ will be a very convenient (and even extremely convenient, cf. Eq. (8.59))
variable to lighten the intermediate calculations. And the variable ρ1 may be inter-
esting to answer some simpler questions, but I will not focus on it here and refer the
reader to the relevant discussion in Chap. 9.

(b) Which approach? I am still convinced that addressing the question of gravi-
tational fragmentation as a spectral problem and to learn from the MHD literature
is essential. However, as we can see here, the MHD and the gravity problems being
fundamentally different, we still have somework in front of us to adapt the techniques
developed by plasma physicists to our context.

(c) To answer the initial question of this section: The only singularity in the present
case is the frequency ω2

f 0 = c2ak
2
y , which is apparent, constituting a range of turning

point frequencies since c2a depends on x in general.

8.1.3.2 The Discrete Spectrum

What is the discrete spectrum?The good news is thatwemay explicit it entirely in two
physically interesting cases: an isothermal fluid in a uniform external gravitational
field (i.e. the exponential atmosphere) and an isothermal self-gravitating slab. Both
are isothermalmodels, so that we are eliminating the effects of the stratification of the
speed of sound. Physically, we are thus avoiding complicated trajectories of acoustic

http://dx.doi.org/10.1007/978-3-319-61881-4_9
http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_9
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waves, and formally c2a is a mere constant, which is why the wave equation greatly
simplifies, up to having simple analytical solutions. Indeed, in this case Eq. (8.10)
reads

ψ′′ − g0

c2a
ψ′ + ω2 − ω2

y

c2a
ψ = 0 (8.15)

that we are now going to solve in the two aforementioned models.

Uniform external gravitational field (g0 = gext) Recall from Sect. 6.2 that in this
case the atmosphere has an exponential profile (Eq.6.16):

ρ0(x) = ρc e
−x/Lext (8.16)

where

Lext ≡ − c2a
gext

. (8.17)

The power of thismodel is its simplicity and handiness, as Eq. (8.15) nowhas constant
coefficients so that its solutions are well known. The solutions of the differential
equation y′′ + by′ + cy = 0 are given by the roots of its characteristic polynomial
x2 + bx + c, and the nature of its solutions depends on the sign of the discriminant
� = b2 − 4c. In our case we have

� = g2ext
c4a

− 4
ω2 − ω2

y

c2a
, (8.18)

hence the following solutions:
For � > 0 solutions are exponential (spatially)

ψ(x) = c1 exp

((
gext

c2a
+ √

�

)
x

2

)
+ c2 exp

((
gext

c2a
− √

�

)
x

2

)
, (8.19)

for � = 0 they read

ψ(x) = (c1x + c2) e
gext
c2a

x
2 , (8.20)

and for � < 0 they are oscillatory (spatially)

ψ(x) = e
gext
c2a

x
2

{
c1 cos

(√|�| x
2

)
+ c2 sin

(√|�| x
2

)}
(8.21)

where c1 and c2 are constants determined by boundary conditions. The purely expo-
nential solutions correspond to regions where waves have spatially damped ampli-
tudes, while the oscillatory solutions exhibit discrete locations (specific values of
x) where the wave ampitudes are exactly zero. In addition, from the discussion in

http://dx.doi.org/10.1007/978-3-319-61881-4_6
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Fig. 8.1 The explicit spectrum (8.23) of the exponential atmosphere, in the spirit of Fig. 7.6.
Because this case corresponds to an isothermal atmosphere, c2a is position independent, so that the
turning point frequency range is only the singleton {ω2

f 0} = {c2ak2y}. This is not representative of
general inhomogeneous media, for which singular frequencies are non trivial ranges of values. The
Alfvén and slow continua, and the slow turning point frequency range are not represented because
they are all equal to 0 and are gathered at the origin of the spectrum

Sect. 7.2.3, we expect the corresponding eigenvalues to be quantized due to bound-
ary conditions. Indeed, let us now explicit the � < 0 case. The boundary condition
(8.13) at x = 0 imposes c1 = 0, and the one at x = xt then imposes that

sin

(
xtδ

2

)
= 0 where δ ≡

√
4
ω2 − ω2

y

c2a
− g2ext

c4a
.

(8.22)

(Quantization Condition—Uniform External gext, Isothermal, Cowling
Approximation)

The argument inside the sine function thus must be a multiple of π, so that the modes
are quantized according to

ω2
n = c2a

(
n2π2

x2t
+ k2y

)
+ g2ext

4c2a
(8.23)

(Discrete Spectrum—Uniform External gext, Isothermal, Cowling Approximation)

where n ∈ N
∗ (n �= 0 since �, and thus the argument of the sine function above, are

assumed non zero here). This constitutes the discrete spectrum of the Exponential
Atmosphere model (Fig. 8.1). The purpose of Sect. 8.3.3 will be to find the discrete
spectrum but without making the Cowling approximation. The generalization of the
quantization condition (8.22) is thenmuchmore involved. Indeed, already in the limit
of a ‘small enough’ density atmosphere it is given byEq. (8.144), and if in addition the
boundaries are ‘far’, it is reduced to the relation (8.151)which generalizes (8.23). The
expressions ‘small enough’ and ‘far’ will be defined precisely in the corresponding
section.

Self-gravitating slab The previous model is interesting in cases in which an exterior
gravitational field is fixed, as for example in the atmosphere of a planet or for a
fluid embedded in, and dominated by, Dark Matter. However, in the Universe, many

http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7


8.1 In the Cowling Approximation 131

fluids are self-gravitating, and g0 is determined self-consistently rather than being
imposed. I will now derive in this case the explicit discrete spectrum of p-modes, in
the Cowling approximation, as we just did for the exponential atmosphere. I have
not found this in the literature yet so, to the best of my knowedge, the spectrum I
obtain below is a new result.

The equations governing the equilibrium were detailed in Chap.6, and for a self-
gravitating planar isothermal atmosphere, the density profile is given by (6.27), and
from this expression onemay easily get with (6.19) that the gravitational acceleration
reads

g0 = −2
c2a
L

tanh
( x
L

)
(8.24)

with the characteristic length scale1

L2 ≡ 2
c2a
ω2
c

(8.25)

where ω2
c ≡ 4πGρ0(0). To clarify the discussion, let us work again with the dimen-

sionless variable x̄ ≡ x
L . Equation (8.15) then reads

ψ′′ + 2 tanh x̄ ψ′ + aψ = 0 (8.26)

where now the derivatives are with respect to x̄ , and where

a ≡ 2
ω2 − ω2

y

ω2
c

. (8.27)

The good surprise is that Eq. (8.26) has two very simple linearly independant analytic
solutions. Their nature depends on the value of a: For a < 1 they are exponential
(spatially)

ψ± = e±√
1−a x̄

cosh x̄
(8.28)

and for a > 1 they are oscillatory (spatially)

ψ± = e±i
√
a−1 x̄

cosh x̄
. (8.29)

Let us for now consider the case a > 1, which corresponds to high frequencies

ω2 > ω2
y + ω2

c

2
. (8.30)

1It is a slightly different definition from L1 given by (6.25) to avoid carrying
√
2 factors in the

following.

http://dx.doi.org/10.1007/978-3-319-61881-4_6
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The solutions areψ = Aψ+ + Bψ−,where the rigidwalls boundary conditions (8.13)
fix the coefficients A and B. The condition at the center x̄ = 0 imposes A = −B
and that at the boundary x̄ = xt/L leads to sin

(√
a − 1 xt/L

) = 0 and thus to the
quantization √

a − 1
xt
L

= nπ (8.31)

with n ∈ N
∗ since xt �= 0 and a �= 1. Finally, using the definitions of L (8.25) and a

(8.27), wemay explicit the discrete spectrum, equivalent of (8.23) for the exponential
atmosphere but for a self-gravitating fluid:

ω2
n = c2a

(
n2π2

x2t
+ k2y

)
+ ω2

c

2
. (8.32)

(Discrete spectrum—Self-Gravitating, Isothermal, Cowling Approximation)

Comments on the discrete spectra (8.23) and (8.32)Given the choice of our closure
relation (Sect. 7.1.1), we cannot have convection in this system, and since we got rid
of the Jeans term (Sect. 7.1.3), we cannot have gravitational fragmentation. Hence,
the only other gravitational instability we could have in principle is the Rayleigh–
Taylor instability. However, as we can see, in both cases here the spectrum is confined
to the positive real axis ω2 > 0, so that we do not have any instability. In fact, finding
a Rayleigh–Taylor instability here would have been rather absurd since the density
profiles of these two atmospheres are decreasing with x . Thus, the denser layers lie
always below the lighter ones, and it makes sense that the greater the stratification,
the greater the density difference between adjacent layers, and the more restoring the
force is. Therefore, the stratification has naturally a stabilizing effect with respect to
the Rayleigh–Taylor instability.

We can also see that the stratification induces an offset. In the literature, the
ω2
n = 0(ky = 0) frequency is called the acoustic cut-off frequency. In the exponential

atmosphere it is equal to

ω2
cut = g2ext

4c2a
(8.33)

and in the self-gravitating slab to

ω2
cut = ω2

c

2
. (8.34)

Intuitively this comes from the fact that, at a given frequency, short wavelength
waves evolve in a medium that is roughly homogeneous, because their wavelength
is shorter than the density profile length scale, and thus they propagate. For long
enough wavelength waves on the contrary, the profile appears as extremely steep,
acting as a wall, so that these are stationary.
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8.1.4 Local Analysis: WKB Dispersion Relations

When studyingwaves and instabilities in homogeneousmedia, thewave equation has
constant coefficients, so that we may look for solutions of the form ρ1 ∝ ei(�k·�r−ωt)

which results in a dispersion relation, as we have done in Chap.7 to derive Jeans
dispersion relation (7.12). In an inhomogeneous medium however, plane waves are
clearly not solutions, but intuitively it is clear that an inhomogeneous medium can
be seen as locally homogeneous so that we should be able to derive dispersion
relations for waves of large enough wavenumber. In the literature, most authors
(e.g. Smeyers and Van Hoolst 2010; Binney and Tremaine 2008) perform such local
stability analyses by plugging plane waves solutions of the above form, thus reducing
the differential equation or system to an algebraic one, and then neglecting terms that
are small because the wavenumber is assumed to be large, for example in cylindrical
systems by considering that |k|R  1. Authors like (e.g. Goedbloed 1984; Keppens
et al. 1993) however, use in their works a similar but quite different technique to study
local waves in stratified media. Both are referred to as ‘WKB dispersion relations’,
named after Wentzel–Kramers–Brillouin who popularized the use of solutions of the
form (8.35) as they used it in Quantum Mechanics. Note however that we are not
going to perform a ‘proper’ formal WKB analysis, which consists in determining
approximate solutions to differential equations in which the highest order coefficient
is multiplied by a small parameter. The literature on this subject is humongous, but I
would advise the very clear Holmes (2013) for instance. But in essence, this ‘proper’
WKBmethod also relies on the idea of looking for solutions of differential equations
close to the exponential form, which is the solution in the case in which coefficients
are constant. The method consists in the following. Let us look for solutions of the
form

ξx = pei
∫
qdx , (8.35)

where p and q are two real functions of x . As illustrated in Fig. 8.2, the function p
monitors how the envelope of the solution varies, while q corresponds to how fast
the solution oscillates spatially. In order for the solution to be close to a plane wave,
we should require that p and q change slowly with respect to position x but the
phase in (8.35) must vary fast. Translating these two requirements in the equation
governing the solution, we will obtain a constraint on q, which wemay then interpret
as the local dispersion relation and q as the local ‘wavenumber’ in the x direction
(quotation marks because the solution is not rigorously a plane wave in the stratified
case).

Let us first repeat the approach adopted in works such as Goedbloed (e.g. 1984);
Keppens et al. (e.g. 1993). Since these are studies ofMHD, their governing equation is
theMHDwave equation (7.45), which is of the Sturm-Liouville form ( f ξ̂′

x )
′ + gξ̂x =

0. In order to later generalize this method to fourth order equations (cf Sect. 8.2.6),
let us now rearrange this equation and write it as

A2ξ̂
′′
x + A1ξ̂

′
x + A0ξ̂x = 0. (8.36)

http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7
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Fig. 8.2 Illustration of the shape required for the solution ξ = pei
∫
qdx to be locally looking like

a plane wave: (i) The local ‘wavenumber’ q(x) around position x should be large compared to the
local gradient, estimated as 1/L where L is the characteristic length of the equilibrium profile, for
themedium to ‘appear’ as almost homogeneous for the perturbation, (ii) the amplitude function p(x)

has to vary slowly enough ( p
′
p of the order or smaller than 1

L ) for the amplitude of the perturbation

to be approximately constant, and (iii) q(x) should not vary too fast either ( q
′
q of the order or smaller

than 1
L ) to have a well defined wavenumber at position x

where ⎧⎪⎨
⎪⎩

A2 = 1
A1 = f ′

f

A0 = g
f .

(8.37)

Plugging in solution (8.35) and identifying real and imaginary parts gives

{
−q2 + A0 + p′

p A1 + p′′
p = 0

2 p′
p + q ′

q + A1 = 0.
(8.38)

Now, let us call L the characteristic length of the equilibrium profile, so that we have
the correspondence

d

dx
↔ 1

L
(8.39)

and ⎧⎪⎨
⎪⎩

p′′
p ∼ 1

L2

p′
p ∼ 1

L

A1 ∼ 1
L .

(8.40)

The idea is then to work in the limit of ‘high order modes’ in which

1

L
� q (8.41)
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so that we may do a perturbative expansion. The p′′
p and p′

p A1 terms in the first
equation of (8.38) are thus of second order, so that this equation gives, up to first
order,

−q2 + A0 = 0 (8.42)

(Local Dispersion Relation—2nd order equation)

where second and higher derivatives in the expression of A0 are neglected. Now,
the whole point of looking for a solution of the WKB form (8.35) is to interpret q
as the local wavenumber in the x direction, so that Eq. (8.42) is interpreted as the
local dispersion relation, and to emphasize this interpretation we will hereafter use
the notation kx instead of q. Also, note that the second equation of (8.38) gives a
constraint on p, which does not affect the equation on q so we do not need it in this
case.

Now, coming back to the problem at hand in this section, the governing equation2

on ξ̂x is (8.36) with ⎧⎪⎨
⎪⎩

A2 = 1

A1 = ρ′
0

ρ0

A0 = ω2−ω2
y

c2a
+ ρ′′

0
ρ0

−
(

ρ′
0

ρ0

) (8.43)

but we neglect the last two terms in A0 as mentioned above, so that the WKB
dispersion relation gives

ω2 = c2a
(
k2x + k2y

)
. (8.44)

In this local dispersion relation, modes along x are not quantized: kx is a continuous
variable. However, for a slab of finite thickness, the only modes that satisfy the
boundary conditions are those whose half of the wavelength fits in the slab an integer
number of times. Thismeans that for a slabwith edge at x = xt we have3 nλx/2 = xt ,
so that kx = nπ

xt
. Now since (8.44) is valid in the limit of large wavenumbers, we may

thus write

ω2 = c2a

(
n2π2

x2t
+ k2y

)
(8.45)

but keeping in mind that n is ‘large’ here. This dispersion relation matches the
discrete spectrum (8.32) deduced previously, in the limit of large n for which the
contribution of the constant cut-off frequency becomes negligible. It is important
for consistency to recover this, because the previous analysis which leads to (8.32)
determined completely the spectrum, so that it must contain the result of this local
analysis. At this point, this local analysis is not of great interest since we have been

2This corresponds to equation (8.15) where we have used the hydrostatic equilibrium (6.1) which

in the planar case reads g0 = c2a
ρ′
0

ρ0
.

3And not 2xt , though the slab spans between −xt and +xt , because we have imposed boundary
conditions such that the displacement vanishes at x = xt and x = 0.

http://dx.doi.org/10.1007/978-3-319-61881-4_6
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able to solve the problem exactly first. But in what follows, we will not be able to
derive the full spectrum as easily, so that simple relations such as (8.42) will bring
us valuable information.

8.2 Wave Equation Formulation

I am now going to derive from the full vector eigenvalue problem (7.58) the corre-
sponding wave equation, i.e. we are going to generalize the wave equation (8.11)
we deduced in the Cowling approximation. To the best of my knowledge, all that
follows is new in the literature.

8.2.1 Wave Equation

For clarity, I will decompose this derivation in 5 steps.

Step 1: Expression of �g1 We are going to follow the same steps as in Sect. 8.1.
The only difference is that we now have the vector �g1 in the linearized momentum
conservation, i.e. we consider the ‘full gravity’ version of the force operator (7.57).
Using the same expression (8.3) for the displacement vector, the linearized mass
conservation (7.30) reads again

ρ1 = ρ̂1(x) e
i(ky y−ωt) where ρ̂1(x) = −ψ′ − ρ0iky ξ̂y, (8.46)

and therefore we see that all quantities, other than �g1, in the momentum conservation
equation are proportional to ei(ky y−ωt), so that this equation ensures that wemaywrite
�g1 as

�g1 = [ĝ1x (x)x̂ + ĝ1y(x)ŷ + ĝ1z(x)ẑ
]
ei(ky y−ωt). (8.47)

Here again quantities with a hat, other than unit vectors, depend on x only. Then,
the constraint (7.6) on �g1, stating that it is irrotational, links its components to each
other according to {

ĝ1x =
(

ĝ1y
iky

)′

ĝ1z = 0
(8.48)

which will greatly simplify the rest of the derivation.

http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7
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Step 2: Rewriting Momentum conservation Now, the linearized momentum con-
servation ρ0∂t �v1 = −ω2ρ0 �ξ = �F with the force operator (7.57), projected onto the
three directions, reads

⎧⎪⎨
⎪⎩

−ρ0ω
2ξ̂x = −c2a ρ̂

′
1 + ρ̂1(ĝ0 − (c2a)

′) + ρ0ĝ1x
−ρ0ω

2ξ̂y = −ikyc2a ρ̂1 + ρ0ĝ1y
−ρ0ω

2ξ̂z = 0.

(8.49)

As before, let us consider ω2 �= 0, so that the third equation ensures that ξ̂z = 0.
Combining (8.46) and the y-component of (8.49), we can isolate ρ̂1, and get

ρ̂1(x) = − ω2

ω2 − ω2
y

ψ′ + ρ0k
2
yGy, (8.50)

where, for convenience in the derivation of this section, I introduce

Gy ≡ 1

ω2 − ω2
y

ĝ1y

iky
. (8.51)

Plugging (8.50) in the x-component of (8.49), and using (8.48), we obtain

G ′
y = − c2a

ρ0(ω2 − ω2
y)

[
ψ′′ − 1

c2a

(
g0 − ω2(c2a)

′

ω2 − ω2
y

)
ψ′ + ω2 − ω2

y

c2a
ψ

]
. (8.52)

(Rewriting Momentum Conservation)

Note that we recover the wave equation (8.10) of the Cowling approximation, as
we should, by setting the left hand side to zero, i.e. ĝ1y = 0. But Eq. (8.52) is not
closed because there are two variables for one equation only. The complementary
information we have not added yet is of course the linearized Poisson equation.

Step 3: Rewriting Poisson equation With (8.48), the linearized Poisson equation
(7.5) becomes (

ĝ1y

iky

)′′
− k2y

(
ĝ1y

iky

)
= −4πGρ̂1. (8.53)

Now, in order to combine it with Eq. (8.52), it is best to rewrite it using the variable
Gy . Using (8.50) and (8.51) we obtain

G ′′
y − 2

(ω2
y)

′

ω2 − ω2
y

G ′
y − k2y

ω2 − ω2
G

ω2 − ω2
y

Gy = 4πG
ω2

(ω2 − ω2
y)

2
ψ′ . (8.54)

(Rewriting Poisson Equation)

http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7
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This step is crucial because it is exactly when the key frequency ω2
G appears, namely4

ω2
G(x) = ω2

y − (ω2
y)

′′

k2y
− ω2

0 (8.55)

(Singular Frequency—Full Gravity)

where G stands for ‘gravitational’, and let us recall the definitions ω2
y(x) ≡ k2yc

2
a(x)

(cf. Eq. (8.9)) and ω2
0(x) ≡ 4πGρ0(x) (cf. Eq. 6.3). We will discuss it in the next

section, but note already that its importance stems from the fact that it will end up
as the singular frequency of the highest degree term of the final (fourth order) wave
equation. We can already see at this stage, before the long calculations that follow,
that it is indeed going to play a significant role. Indeed, to get the equation on ψ only,
we are going to plug (8.52) into (8.54). But note that (8.52) gives G ′

y while (8.54)
contains Gy , so that we will need to have to differentiate (8.54) one more time. This
is what makes the final equation of fourth order, unless the term containing Gy in
(8.54) actually vanishes, which happens precisely when ω2 = ω2

G . In this case, we
do not have to differentiate once more, so that the order of the resulting equation
will be of one order less. This gives a feeling that the highest order term of the final
equation must be proportional to ω2 − ω2

G since this frequency lowers the equation
by one order.

Step 4: Equation onψ Isolating Gy from (8.54) and differentiating gives an equation
in which only G ′

y intervenes, and all that is left to do is to insert the expression of G ′
y

from (8.52) to end up with an equation on ψ only, namely

4∑
i = 0

Biψ
(i) = 0 (8.56)

where all the coefficients Bi depend on x and are parameterized by ω2. Their full
expressions are the following (with �G ≡ ω2 − ω2

G):

4Of course, one may eliminate k2y , writing ω2
G = ω2

y − (c2a)
′′ − ω2

0 , but the form given here is how
it naturally appears, and is such that the comparison with its cylindrical generalization (9.6) is
transparent. And in the latter case, the analogue of ky is position dependent so that we may not
simplify like here.

http://dx.doi.org/10.1007/978-3-319-61881-4_6
http://dx.doi.org/10.1007/978-3-319-61881-4_9
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B4 = �G

B3 = �G

[
3 (c2a )′

c2a
− 3

ρ′
0

ρ0

]
− �′

G

B2 = �G

[
ω2+ω2

0−2g′
0

c2a
+ 3 (c2a )′′

c2a
− 4

ρ′
0

ρ0

(
(c2a )′
c2a

− ρ′
0

ρ0

)
− ρ′′

0
ρ0

− 2k2y

]

− �′
G

[
2 (c2a )′

c2a
− 2

ρ′
0

ρ0

]

B1 = �G

[
ρ′
0

ρ0

(
− 2ω2+ω2

0
c2a

− 3 (c2a )′′
c2a

+ 6
ρ′′
0

ρ0
− 6

(
ρ′
0

ρ0

)2 + 3k2y

)
− ρ′′′

0
ρ0

− 3 (c2a )′
c2a

(
ρ′′
0

ρ0
− 2

(
ρ′
0

ρ0

)2 + k2y

)]

+ �′
G

[
2 (c2a )′

c2a

ρ′
0

ρ0
+ ρ′′

0
ρ0

− 2
(

ρ′
0

ρ0

)2 + k2y

]

B0 = �G

[
ω2

c2a

(
− ρ′′

0
ρ0

+ 2
(

ρ′
0

ρ0

)2 − k2y

)
+ k2y

(
− ω2

0
c2a

− 3 (c2a )′′
c2a

+ 3
ρ′
0

ρ0

(c2a )′
c2a

+ ρ′′
0

ρ0
− 2

(
ρ′
0

ρ0

)2 + k2y

)]

+ �′
G

[
ρ′
0

ρ0
ω2

c2a
+ k2y

(
2 (c2a )′

c2a
− ρ′

0
ρ0

)]
.

(8.57)
Equation (8.56) is the full equation governing ψ, of which Eq. (8.10) is only an
approximation obtained in the Cowling approximation.

Step 5: The wave equation on ξ̂ Finally, to get the equation on ξ̂x only, we simply
have to use the definition ψ = ρ0ξ̂x and differentiate it up to four times. Using
Leibniz’s rule, it is direct to show that by writing the wave equation as

4∑
i = 0

Ai ξ̂
(i)
x = 0 (8.58)

(Wave Equation—Full Gravity)

the coefficients Ai can be expressed in terms of the Bi s according to

⎛
⎜⎜⎜⎜⎝

A0

A1

A2

A3

A4

⎞
⎟⎟⎟⎟⎠

= ρ0

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρ′
0

ρ0

ρ′′
0

ρ0

ρ′′′
0

ρ0

ρ(4)
0
ρ0

0 1 2 ρ′
0

ρ0
3 ρ′′

0
ρ0

4 ρ′′′
0

ρ0

0 0 1 3 ρ′
0

ρ0
6 ρ′′

0
ρ0

0 0 0 1 4 ρ′
0

ρ0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

B0

B1

B2

B3

B4

⎞
⎟⎟⎟⎟⎠

. (8.59)

Equation (8.58)with coefficients (8.59) is the full equation governing ξ̂x , ofwhich the
simple Eq. (8.11) is only an approximation obtained in the Cowling approximation.

Comments First of all, while we did anticipate that the order of the wave equation
would be higher than in the Cowling approximation, the finding now is that the
problem is also far more complex because of the length of the coefficients. However,
confronted with the complexity of this wave equation, one should be all the more
rejoiced by the spectral theory approach. Indeed, it is particularly pleasant to see that
the highest order term is very simple, and that at the same time, this iswhatmatters the
most. As mentioned in Sect. 7.2, in order to study the stability, the key is to focus on
the positions at which the singularity occurs, i.e. in our case the positions xs for which
ω2 = ω2

G(xs). I have already started exploring this. It is clearly very promising, but
the techniques developed in the plasma literature I have been learning from cannot

http://dx.doi.org/10.1007/978-3-319-61881-4_7
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be directly used because the equation here is of fourth order. Some more little steps
are required, but the way to proceed is clear and left for future work. To stress this
point, let me mention two quotes from two very important articles. In Ledoux (1950)
the author comments on the work of Pekeris (1938) who derived a similar equation,
saying “il est conduit à une équation différentielle du quatrième ordre aux coefficients
extrêmement compliqués5”, and does not pursue in this direction (neither does he in
Ledoux andWalraven 1958). Similarly, Goldreich and Lynden-Bell (1965) state that
they could “end up with an equation for φ1 (of fourth order). However [they] did not
find the result very enlightening so [they] shall not repeat it [in their paper]”.My point
is that studying the equation through its singularities is a way of having potentially
simple information from a complicated equation. Note that the equations mentioned
in these two articles are on other variables than the Lagrangian displacement vector,
so they do not end up with the same singularity ω2

G as I exhibit here. We will come
back to the importance of the choice of variable in Sect. 9.3, but as we discussed in
Sect. 7.1.1 the Lagrangian displacement vector is a very fundamental variable, from
which the others may be derived, so it is an improvement to work with it as in this
manuscript.

Secondly, the steps 4 and 5 are in essence simple, since they are just a matter of
bookkeeping.Relation (8.59) gives a hint of howconvenient the intermediate step 4 is.
Look at the expression of A0 for instance. It is a linear combination of all the Bi ’s, so if
one tries to compute directly the wave equation on ξ̂x , the calculation is particularly
difficult. In the Cowling approximation, step 4 to 5 occurred from Eq. (8.10) to
(8.11), which did not make this variable seem necessary. Having said that, note that
unfortunately, in the perspective of future works, this convenient variable is relevant
here only because we are dealing with a simple situation, in which the background is
static, without any magnetic field and rotation, etc. Indeed, ρ0 �ξ does not appear as a
natural variable anymore already in the more general force operator (7.29) because
of the magnetic terms. Thus, obtaining Eq. (8.58) with coefficients (8.59) is in fact
absolutely necessary, be it only for the sake of reference when later generalizing to
non-static magnetized situations.

Thirdly, I will show in Sect. 8.2.3 that by exploiting the equilibrium relations fully,
we can fortunately rewrite the coefficients Bi and Ai in a much more handy way,
which is why I do not develop further the expression of the Ai ’s above. They will
remain far more involved than in the Cowling approximation, but will fit in two lines.

8.2.2 A New Singular Frequency ω2
G

A New Singular frequency ω2
G The wave equation (8.58) presents a singular fre-

quency, analogous to those found in the MHD wave equation (7.45). So far, despite
my efforts, I have not found the mention of such a frequency in the literature. It
is in that sense that I qualify it as ‘new’ here, and not because it would be a new

5“he ends up with a fourth order differential equation with very complicated coefficients”.

http://dx.doi.org/10.1007/978-3-319-61881-4_9
http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7
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continuum. Indeed, as mentioned in Sect. 7.2, adding the Jeans term does not add
any new wave because the Poisson equation is not an evolution equation (no gravi-
tational waves!). Therefore this singularity can only correspond to one of the MHD
singularities exposed in Sect. 7.2, and since the magnetic field is put to zero here,
there is no other choice than stating that

ω2
G is the generalization of the fast singularity ω2

f 0

which takes into account the fact that acoustic waves themselves modify the gravita-
tional potential they propagate into, so that they propagate in a potential well different
from the one of the equilibrium configuration. This statement is also consistent with
the fact that ω2

G is equal to ω2
y (which is ω2

f 0 in this context) plus terms that are
due to gravity, since the derivatives in the (ω2

y)
′′/k2y term are clearly stemming from

the stratification, and the 4πG factor hidden in ω2
0 directly comes from Poisson’s

equation. Therefore in the limit of vanishing gravity, we recover the classical fast
singularity.

Nature of this singularityHaving said that, a striking fact appears: the fast singular-
ity in the MHD wave equation has been demonstrated to be an apparent singularity,
which was ‘intuitive’ because this singularity occurs in the denominator of the high-
est order term of the MHD wave equation. But the ω2

G singularity on the contrary
occurs at the numerator of the wave equation here! In that sense it looks genuine.
However, as I pointed out in Sect. 8.1.3.1, the form in which we write the wave
equation matters. At the present, I can not tell the true nature of the singularity in
Eq. (8.58) because it is not yet in the same form as the MHD wave equation.

Something very enlightening, that I am planning to do, would be actually to
include amagnetic field. Indeed, one of the outcomes ofMHD spectral theory studies
is that, paradoxically, studying the HD spectrum is harder than studying its MHD
generalization. In fact, the hydrodynamical case contains degeneracies which bring
in confusions. When a magnetic field is included, the equations are lengthier, but
the degeneracies are lifted, and the equations become easier to interpret. In the same
spirit, I am convinced that adding a magnetic field here would help interpreting the
spectrum in this ‘Full Gravity’ situation, by analysing how all the MHD singularities
are modified and generalized.

Information on stability As one can see in the ordering (7.53), the singularities
of the MHD wave equation are only positive frequencies. So far, since I have been
essentially exploring the MHD literature in which those singularities are positive,
I have seen very few references mentioning what happens in systems in which the
singularities extend to the negative part of the spectrum. The rare authors who men-
tion this possibility suggest that the analysis would then be more complicated (e.g.
Lifschitz 1989; Freidberg 2014). The important point is that in many cases that I have
explored, i.e. for relevant ρ0 and c2a profiles as those from Chap.6, part of the range
of frequencies ω2

G(x) belongs to the negative domain of the real axis. This is clearly
the sign of instability, but in a sense that deserves to be spelled out. For instance, an

http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_6
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extremely important piece of information provided by expression (8.55) is the singu-
lar point xs for which ω2 = ω2

G(xs), about which a local analysis must be performed.

8.2.3 The Three Important (inverse) Length Scales: kρ, kJ
and ky

The coefficients Bi contain the quantities (ρ0, ρ′
0, ρ

′′
0, ρ

′′′
0 ) and (c

2
a, (c

2
a)

′, (c2a)′′, (c2a)′′′),
and the Ai s too, with A0 containing ρ(iv)

0 in addition.6 Therefore, as such, it seems that
the system containsmany different characteristic length scales of which, for instance,

L1 ≡ ρ0
ρ′
0
, L2 ≡

√
ρ0
ρ′′
0
, etc., and similarly with ca . This, however, is not correct. I am

now going to show that the derivatives of ρ0 and those of ca are not independent
of each other. In fact, the system is fully described by exactly three length scales
only: two characterize the stratification along x of the equilibrium state (kρ and kJ
below), and one characterizes the perturbation along the transverse direction to the
stratification (namely ky).

Equilibrium relations In a plane stratified medium, the hydrodynamic equilibrium
(6.1) and the equilibrium Poisson equation (6.2) may be rewritten respectively

{
g0 = −c2akρ

g′
0 = −ω2

0
(8.60)

where I introduce the local gradient kρ defined as

kρ(x) ≡ −ρ′
0

ρ0
. (8.61)

(Local Gradient)

For convenience, I add aminus sign in this definition to ensure that kρ > 0 in physical
situations, in which ρ0 is a decreasing function of x . The other crucial length is given
by the local Jeans wavenumber kJ defined as

k2J (x) ≡ ω2
0

c2a
(8.62)

(Local Jeans Wavenumber)

These two length scales are the most natural in the context of gravitational frag-
mentation in stratified media: We are already familiar with the Jeans length (7.13)

6The dependence on (c2a)
′′′ is hidden in the factors�′

G = −k2y(c
2
a)

′ + (c2a)
′′′ + ω0

ρ′
0

ρ0
that I have left

this way to make the expression (8.57) a little bit more compact.

http://dx.doi.org/10.1007/978-3-319-61881-4_6
http://dx.doi.org/10.1007/978-3-319-61881-4_6
http://dx.doi.org/10.1007/978-3-319-61881-4_7
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in the homogeneous case which is the fundamental length governing the transition
between stability and instability, and the local gradient surely plays an important role
since it is the length characterizing the steepness and thus the ‘importance’ of the
stratification, whose effect we are precisely trying to assess.

Written in the formof system (8.60), the equilibrium is strikingly simple to handle.
Plugging the first in the second directly gives

(c2a)
′

c2a
kρ + k ′

ρ = k2J . (8.63)

In addition, given that for a polytrope c2a = κγρ
γ−1
0 (cf. Eq. 6.6), we obtain (c2a)

′
c2a

=
(1 − γ)kρ. It is then easy to combine these relations to express the quantities present
in the Bi and Ai coefficients in terms of kρ, kJ and ky only, as promised:
• Derivatives of c2a : ⎧

⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c2a = κγρ
γ−1
0

(c2a)
′

c2a
= (1 − γ)kρ

(c2a)
′′

c2a
= (1 − γ)k2J

(c2a)
′′′

c2a
= (γ − 1)kρk2J

(8.64)

• Derivatives of ρ0:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ′
0

ρ0
≡ −kρ

ρ′′
0

ρ0
= (2 − γ)k2ρ − k2J

ρ′′′
0

ρ0
= (2γ − 3)(2 − γ)k3ρ + (7 − 3γ)kρk2J

ρ(4)
0
ρ0

= (3γ − 4)(2γ − 3)(2 − γ)k4ρ + (7 − 3γ)k4J
+ (2 − γ)(12γ − 23)k2ρk

2
J

(8.65)

Intuition may be deceiving Here is a first very important consequence of this. As
discussed in Chap. 6, typical equilibrium profiles are flat in their center (x ∼ 0).
Therefore intuitively, it is reasonable to think that since the slab is locally homoge-
neous, perturbations behave as they would in a homogeneous Universe, satisfying
the usual Jeans criterion for instance. However, look at relations (8.65). Doing the
‘Jeans swindle’ (cf. Chap.7) consists in setting the quantities on the left hand side to
zero, but in fact, because k2J is finite as x → 0, the right hand side of ρ′′

0/ρ0 and of
ρ(4)
0 ρ0 does not vanish in this limit! Therefore the equation governing the evolution

of the perturbations is not the one deduced doing the ‘Jeans swindle’, even in this
region where the profile is flat. Physically this is stemming from the fact that gravity
is not local, and the lesson is that the whole profile may matter, even locally.

http://dx.doi.org/10.1007/978-3-319-61881-4_6
http://dx.doi.org/10.1007/978-3-319-61881-4_6
http://dx.doi.org/10.1007/978-3-319-61881-4_7
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8.2.4 Rewriting the Wave Equation Simply

We are now ready to rewrite (8.58) in a compact form, bringing its expression back
to a ‘humanly’ tractable size.

Isothermal fluid For an isothermal equation of state, the frequency (8.55) reads

ω2
G = ω2

y − ω2
0 (8.66)

and the coefficients of the wave equation become

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AIS
4 = c2a (ω2 − ω2

G)

AIS
3 = −c2akρ(ω

2 − ω2
y)

AIS
2 = (ω2 − ω2

G)(ω2 − 2ω2
y − 2ω2

0) − c2ak
2
ρω

2
0

AIS
1 = kρ(ω

2
y + 2ω2

0)(ω
2 − ω2

y)

AIS
0 = −k2y

[
(ω2 − ω2

G)(ω2 − ω2
y) − c2ak

2
ρω

2
0

]
(8.67)

(Wave Equation—Full Gravity, Isothermal)

The superscripts ‘IS’ here stand for ‘Isothermal Self-gravitating’. Indeed, this is
valid for a self-gravitating fluid only because we have used the equilibrium Poisson
equation to derive it.

Polytropic fluid For a general polytropic equation of state, the frequency (8.55)
reads

ω2
G = ω2

y − (2 − γ)ω2
0 (8.68)

and the coefficients of the wave equation become

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A4 = AIS
4 + (1 − γ) c2aω

2
0

A3 = AIS
3 + (1 − γ)

[
3ω2 − 2ω2

y + 3(2 − γ)ω2
0

]
c2akρ

A2 = AIS
2 + (1 − γ)

[
ω2
0

(
4ω2 − 5ω2

y + (4 − 3γ)ω2
0

)
+ c2ak

2
ρ

(
(1 − 2γ)ω2

y + (3 − 2γ)ω2
0

)]
A1 = AIS

1 − (1 − γ)
[
3ω2 − 2ω2

y + (8 − 3γ)ω2
0

]
ω2
ykρ

A0 = AIS
0 − (1 − γ)

[
ω2
0

(
4ω2 − 4ω2

y + 3(2 − γ)ω2
0

)
+ c2ak

2
ρ

(
(1 − 2γ)ω2

y + (3 − 2γ)ω2
0

)]
k2y

(8.69)

(Wave Equation—Full Gravity, Polytropic)

I chose to express these Ai coefficients in the above form, namely as ‘the isothermal
self-gravitating coefficients plus additional terms’, having inmind the following idea.
The isothermal self-gravitating case is the simplest. In the Cowling approximation,
the wave equation may be solved exactly as we have seen in the previous section.
In addition, as we will see next, we can find solutions of the full wave equation
pertubatively starting from the solution in the Cowling approximation. In the full
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polytropic case however, even the density profile cannot be expressed analytically,
and kρ is linked to kJ in the non trivial way (8.63). Therefore, there is little hope of
having as many possibilities of finding analytical solutions of (8.69) in the general
case. However, as usually, it is extremely enlightening to solve equations considering
various regimes. In the present case, I think that a promising way to study the effect
of the temperature stratification (because after all, the isothermal case γ = 1 is pretty
limited physically speaking) is to solve the wave equation is the nearly isothermal
limit, i.e. for γ � 1. Formally, the idea is to study (8.69)manipulating 1 − γ as a small
parameter and solve it using perturbative methods about the isothermal solution.

With an external background So far, the fluid has been considered as self-
gravitating. But in many astrophysical and cosmological situations, fluids are not
isolated. Let us therefore now briefly explore the case in which the fluid is embedded
in an other fluid of density ρext. The hydrostatic equilibrium (6.1) retains its form,
namely −�∇ p0 + ρ0�g0 = �0, but now the equilibrium gravitational field is that due to
the total matter density, so that it is governed by the following Poisson equation

�∇ · �g0 = − (ω2
0 + ω2

ext

)
, (8.70)

whereω2
ext ≡ 4πGρext, rather than (6.2). Therefore, the equilibrium state is modified,

and thus the equilibrium relations (8.64) and (8.65) intervening in the evolution of
perturbations are modified too. It is straightforward to show, in the lines of what we
have done above, that in this case the following new terms appear:
• Derivatives of c2a : ⎧

⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c2a : 0
(c2a)

′
c2a

: 0
(c2a)

′′
c2a

: (1 − γ)k2Jext
(c2a)

′′′
c2a

: (γ − 1)kρextk2Jext

(8.71)

• Derivatives of ρ0:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ′
0

ρ0
: 0

ρ′′
0

ρ0
: −k2Jext

ρ′′′
0

ρ0
: [3(2 − γ)kρ + kρext

]
k2Jext

ρ(4)
0
ρ0

: [6(2γ − 3)(2 − γ)k2ρ + (13 − 6γ)k2J
+ 3(2 − γ)k2Jext + 4(γ − 2)kρextkρ − ρ′′

ext
ρext

]
k2Jext

(8.72)

with k2Jext ≡ ω2
ext/c

2
a .

Now, in principle, when linearizing the equations, both fluids (of density ρ0 and
ρext) are perturbed and are coupled through the linearized Poisson equation �∇ · �g1 =
−4πG (ρ1 + ρ1ext). However, it is out of the scope of this manuscript to consider
this bi-fluid approach. It may though be very interesting and important, but it is

http://dx.doi.org/10.1007/978-3-319-61881-4_6
http://dx.doi.org/10.1007/978-3-319-61881-4_6
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left for future work. For now, I will neglect the perturbations of the background
fluid7 by considering that ρ1ext � ρ1. This assumption decouples the evolution of
the perturbations of both fluids, so that the perturbation equations are identical to the
self-gravitating ones, and the only changes with respect to the previous derivation
concern the equilibrium relations, given by (8.71) and (8.72).

Let us look at the modifications in the isothermal case. This gives

ω2
G = ω2

y − ω2
0 (8.73)

and ⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A4 = AIS
4

A3 = AIS
3

A2 = AIS
2 − 3

(
ω2 − ω2

G

)
ω2
ext

A1 = AIS
1 + (3(ω2 − ω2

G)kρext − 2ω2
0kρ

)
ω2
ext

A0 = AIS
0 +

(
(ω2 − ω2

G)(k2y − ρ′′
ext

ρext
) + kρextω

2
0kρ

)
ω2
ext

(8.74)

(Wave Equation—Full Gravity, Isothermal, With External Background)

where kρext = − ρ′
ext

ρext
. We can see that the coefficients A3 and A4 are not modified

compared to the isothermal case and thus neither is ω2
G . This stems from the fact that

the potential is assumed to stay fixed, and thus does not intervene in the linearized
Poisson equation (7.5), which is what makes the equation of fourth order, and only
modifies the equilibrium profile.

Equations (8.67), (8.69) or (8.74) are the starting point to build physical models
of perturbed walls and filaments, with the equilibrium profiles detailed in Chap.6.
These are left for future work, but obviously a lot of interesting physics is in sight.

8.2.5 Ordering of the Length Scales in the Slab

Now, in addition, the lengths kρ and kJ are not independent. Indeed, with relation
(8.63), one can show that

dk2ρ
dx

= 2kρk
′
ρ = 2kρ((γ − 1)k2ρ + k2J ) (8.75)

7It is tempting to think that the case considered here is physically motivated by the fact that in most
cosmological environments darkmatter dominates the density budget and the gravitational potential
in which baryons evolve. But there is no reason a priori that if ρ0 � ρ0ext , then ρ1ext � ρ1. So my
feeling about this model is that it is an interesting case in which, for some reason, the background
fluid is stiff. Note also that in reality, in the cosmic web, the dark matter density distribution contains
non linear substructures (e.g. Schneider et al. 2010) into which cold baryonic gas may fall. I do
not include those in my analysis precisely because my aim is to investigate whether the gas may
fragment gravitationally on its own.

http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_6
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and
dk2J
dx

= (γ − 2)kρk
2
J , (8.76)

so that, considering k2ρ as a function of k2J rather than of x , the ratio of these two
relations gives

dk2ρ
dk2J

= 2
γ − 1

γ − 2

k2ρ
k2J

+ 2

γ − 2
(8.77)

which is a first order linear differential equation of the form

y′ = α
y

x
+ β (8.78)

for a function y(x). I solve it imposing as the boundary condition that the density
profile is flat at x = 0, so that k2ρ(k

2
J0) = 0 where k2J0 ≡ k2J (x = 0). This results in

k2ρ = 2

γ
k2J

[(
k2J
k2J0

)γ/(γ−2)

− 1

]
(8.79)

(Link between kρ and kJ)

Thanks to this relation, we can study exactly, i.e. depending on the position x in
the slab, the ordering of the three length scales kρ, kJ and ky appearing in the wave
equations (8.67), (8.69) and (8.74). This is paramount because in different regions of
the slabwhere they are differently ordered, in principle the coefficients Ai will change
qualitatively, and so will the evolution of the perturbations. Now, representing these
orderings in the three dimensional space (k2ρ, k

2
J , k

2
y) would be rather complicated.

Instead, I propose amore efficient way of visualizing this, by considering a projection
on the (k2ρ, k

2
J ) plane for a given k2y . This plane is then composed of six different

regions, delimited by the dashed lines in the left of Fig. 8.3, corresponding to the six
possible orderings of these three lengths, so that no information is lost.

The left of Fig. 8.3 is a schematic plot of relation (8.79). Curves are parametrized
by position x , with x increasing from right to left. On the right of that same figure,
I schematically represent a typical density profile, with colors indicating regions in
the slab with different orderings of the three characteristic lengths. It is interesting
to notice for example that at the outskirt of the slab (x → ∞) there is a qualitative
change of the behaviour of perturbations for γ > 1 and γ < 1. But one has to keep
in mind that for equilibria with γ > 1, physics requires us to truncate such profiles,
cf. Chap. 6. Therefore the curve corresponding to γ > 1 is in practice truncated at
some position xt .

http://dx.doi.org/10.1007/978-3-319-61881-4_6
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Fig. 8.3 The ordering of the three length scales depends on the position x in the slab. Left Sketch of
typical equilibrium density profiles for γ > 1,= 1 and < 1 in the parameter space (k2J , k

2
ρ). Curves

are parametrized by position x , increasing from right to left. Middle Color coding for the various
orderings. Right Sketch of a typical equilibrium density profile. As we see from the left and middle
panels, depending on the wavenumber ky of the perturbation along y, we expect perturbations to
behave differently in various regions in the slab along x

8.2.6 Local Analysis: Generalizing WKB Dispersion
Relations

The outcome of our analysis of the ordering of the three length scales kρ, kJ and
ky is that the evolution of perturbations may be qualitatively different in various
regions of the slab. This prompts us to study the local behaviour of perturbations in
the slab, in the same lines as we did in Sect. 8.1.4. However, despite all my efforts,
I did not find in the literature a proper generalization of this method to fourth order
equations. Therefore, I propose the following derivation to do so. It is not highly
rigorous in the sense that the orderings used to neglect terms might not be satisfied
in some cases, but given the complexity that a fourth order equation represents and
in particular a non trivial one as the above wave equation, this study is an important
exploratory phase. I would rather see the dispersion relations below as educated
guesses which may later be compared with numerical resolutions. In fact, this is the
spirit of Blokland et al. (2005) for instance, dealing with second order equations,
who study a posteriori the validity of their WKB dispersion relation by comparing
it to a numerical solution. They find that their prediction is in excellent agreement,
even in a region where the approximation should a priori be failing. Actually, the
fact that WKB approximations tend to be surprisingly good even well beyond their
strict domain of validity is a general feature (Holmes 2013).

Plugging the sameWKB form (8.35) for ξ̂x in the wave equation (8.58) and iden-
tifying real and imaginary parts gives the equivalent of the system of two Eqs. (8.38)
of the second order case. Now this system is much more involved and contains up to
fourth order derivatives, but with the correspondence d

dx ↔ 1
L we will consider them

as negligible for large L , and conserve only terms of order zero and one. We are then
left with
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⎧⎨
⎩

A4q4 − 3A3

(
p′
p + q ′

q

)
q2 − A2q2 + A1

p′
p + A0 = 0

−2A4q2
(
2 p′

p + 3 q ′
q

)
− A3q2 + A2

(
2 p′

p + q ′
q

)
+ A1 = 0.

(8.80)

For A4 = A3 = 0 and A2 = 1we recover (8.38), without its second order term, as we
should. Now, recall that the Ai s depend on x . Thus, in these two equations, depending
on the region in the slab, some terms are much smaller or much bigger than others.
More precisely, a general feature of the wave equation (8.58) is that coefficients with
odd indices (A3 and A1) contain only odd powers of kρ, while coefficients with even
indices (A4, A2 and A0) contain only even powers of kρ, and thus in particular terms
independent of kρ. Therefore, depending on kρ the ordering between the terms in
(8.80) varies. We will distinguish two regimes, namely a ‘flat regime’ corresponding
to regions where kρ is extremely small, and a ‘steep regime’ where it is not.

(i) The ‘flat regime’ It corresponds to regions of the slab in which kρ is small, i.e. the
density profile is locally flat, typically at its center (x � L) and outskirts (x  L).
In this case we may treat coefficients A1 and A3 as first order terms since they are
proportional to kρ. After getting rid of second order terms, the first equation of (8.80)
becomes A4q4 − A2q2 + A0 = 0. We then interpret q as the local ‘wavenumber’ in
the x direction, so that we will hereafter use the notation kx instead of q, and call
this constraint the ‘flat dispersion relation’:

A4k
4
x − A2k

2
x + A0 = 0. (8.81)

(‘Flat’ Local Dispersion Relation)

Note that the second equation in (8.80) constrains the function p but we do not need
this information in this regime. Let us now look at this relation in the three situations
of which we derived the wave equations in Sect. 8.2.4.

(a) Isothermal The wave equation of an isothermal self-gravitating slab is (8.67),
and in such a profile, kρ → 0 as x → 0. Therefore, in the central region of the slab,
the relevant local dispersion relation is (8.81) and it gives

ω2 = c2a(k
2
x + k2y) + 2k2x

k2x + k2y
ω2
c (8.82)

where ω2
c = ω2

0(x = 0). The continuous lines in Fig. 8.4 represent these solutions,
with units of length given by the Jeans wavenumber at the center kJ(0), i.e. by L
(up to a

√
2 factor, cf. Definition (8.25)). These solutions are compared to the exact

spectrum (8.32) we obtained in the Cowling approximation in order to visualize
the effect of the Jeans term on the spectrum. Because the latter is discrete, in the
same lines as in Sect. 8.1.4, we quantize the modes from relation (8.82) in Fig. 8.4
to perform the comparison. By construction, we expect this dispersion relation to
be valid for kx larger than 1/L since we have been working under the assumption
qL  1. In the plot Fig. reffig:DiagnosticDiagramWallspsInspskJeansspsUnits we
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Fig. 8.4 Diagnostic diagram, i.e. ω2 as a function of k2y , in the central region of an isothermal

self-gravitating slab. The angular frequencies ω2 are normalized by ω2
c = ω2

0(x = 0) and ky is
normalized using the central Jeans wavenumber kJ(0). In dashed lines I show the spectrum in the
Cowling approximation given by expression (8.32). In continuous lines is the spectrum using the
‘flat’ WKB dispersion relation (8.82), where the x-wavenumber is quantized as kx = nπ

xt
to enable

a comparison. The first four modes n = 1, 2, 3, 4 are shown here (the lighter the color, the higher
the mode), and the thickness of the slab xt is chosen such that kJ(0)xt = 2π simply to make this
plot more readable. The shift between these two sets of curves is due to the Jeans term: We see that
for high ky the Jeans term has a destabilizing effect, while it stabilizes for low ky

should therefore in principle8 be cautious with the black curve which corresponds to
low kx , but the others are directly reliable. There is no restriction on ky however, so
wemay trust the plot Fig. 8.4 on the full range ky , for large enough kx .We see in these
plots that as ky goes to infinity, the correction due to Jeans vanishes. We recover the
idea anticipated in Sect. 7.3.2 that the Cowling approximation in good for high order
modes. It is also interesting to observe that for small ky the predicted eigenvalues
are higher than in the Cowling approximation. The Jeans term thus tends to take ω2

away from the negative values, and in that sense has a stabilizing effect. This comes
as a surprise based on the intuition from the usual Jeans criterion in homogeneous
media that the long wavelengths are the unstable ones.

(b) Polytropic From Eq. (8.69), the flat local dispersion relation at the center reads

ω2 = c2a(k
2
x + k2y) + 2k2x

k2x + k2y
ω2
c + 3(γ − 1)ω2

c . (8.83)

The fact that there is a qualitative change of behaviour in the evolution of the pertur-
bations for γ greater or smaller than 1 was already anticipated in Chap.6, where we

8As stated above,WKB approximations are often very good approximations even beyond their strict
domain of validity, so that the precautions taken here may turn out to be unnecessary. Comparison
with a numerical resolution (e.g. with a shooting method Goedbloed and Poedts 2004) will give
this answer.

http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_6
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noted that the gradient of the speed of sound changes sign at γ = 1. More precisely,
it is instructive to rewrite the force operator (7.57), using (7.4), as

�F(�ξ) = −c2a �∇ρ1 + ρ1�geff0 + ρ0�g1 (8.84)

where the spatial dependence of the speed of sound acts locally as an effective
gravitational field:

�geff0 ≡ �g0 − �∇c2a = [g0 + (γ − 1)kρc
2
a] x̂ . (8.85)

The second equality stems from the equilibrium relations (the second relation in
(8.64)). Recalling that g0 < 0 and kρ > 0, we can see that when γ < 1, the absolute
value of this effective local gravitational field is greater than |g0|. Intuitively we may
say that this favors the mixing of adjacent layers of the stratified fluid, as discussed
in Chap.7, and thus the term 3(γ − 1)ω2

c , which does not appear in the isothermal
case, may be interpreted as the signature of a Rayleigh–Taylor instability.
c) External Background Considering a profile flat at the center, which is not nec-
essarily the case when an external background exists (cf. Chap.6), we have

ω2 = c2a(k
2
x + k2y) + 2k2x

k2x + k2y
ω2
c + (3k2x + k2y)ω

2
c,ext − (ω2

c,ext)
′′

k2x + k2y
(8.86)

where ω2
c,ext and (ω2

c,ext)
′′ are the values of ω2

ext and (ω2
ext)

′′ at x = 0. The minus sign
seems to indicate a destabilizing effect. However, consider the Taylor expansion of
the density profile about x = 0. Since the profile is decreasing with x , and it is flat at
the center (for this relation to be valid), the linear term in the expansion is null, and
the second term, given by the second derivative, has to be negative in order for ρ(x)
to indeed be smaller than its value at x = 0. Hence in fact relation (8.86) states that
such profiles have only a stabilizing effect.

(ii) The ‘steep regime’ It corresponds on the contrary to regions in which kρ is large,
typically in regions x ∼ L . Then in this regime, in the first equation of (8.80), we still

expect the terms −3A3

(
p′
p + q ′

q

)
q2 and A1

p′
p to be small compared to the others

because we are in the limit of small (qL)−1. But now, in the second equation, the
terms −A3q2 and A1 will be the dominant ones. Hence, at their leading order, the
equations of the system (8.80) become in this regime

{
A4q4 − A2q2 + A0 = 0
−A3q2 + A1 = 0

(8.87)

and thus the first equation is not decoupled from the second anymore. Also, in this
regime A3 �= 0 so that we may combine these two equations to get what we may call
the ‘steep dispersion relations’

http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_6
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A4A
2
1 − A3A2A1 + A2

3A0 = 0 (8.88)

and
−A3q

2 + A1 = 0 . (8.89)

(‘Steep’ Local Dispersion Relations)

Note that these are indeed dispersion relations, even the first one which does not
contain q, because the Ai s contain ω2 and k2y . Unfortunately, at this stage I do not
have time to pursue their analysis, but they look particularly interesting because they
show signs of instability. If fragmentation occurs in these regions far from the center,
blobs forming there will fall into the background gravitational potential and angular
momentummay be induced if various blobs merge at the center with different impact
parameters.

8.3 Matrix Formulation

So far, we have reformulated the vector eigenvalue problem into a one-dimensional
wave equation, constituting another point of view that brought us important informa-
tion. The good news is that wemay reformulate the problem in a third way, namely in
matrix form, which will reveal yet more information. The wave equation is of fourth
order and has very large coefficients. As we will see, reformulated in matrix form,
the problem will be lighter, and will enable us to naturally find explicit solutions in
a perturbative approach. Finally, a matrix form is most adapted for numerical reso-
lutions, and also from the analytical point of view, many tools from linear algebra
may be used, for example discussions on the eigenvalues of the governing matrix.
Unfortunately, such discussions are beyond the scope of thismanuscript, but from the
experience of other fields of physics, it is clear that such a formulation is potentially
a mine of information from which very simple and powerful results can be derived.

8.3.1 Matrix Formulation

In order to lighten the derivation and focus on the ideas I want to develop, I will
present this section in the isothermal case only. Therefore the frequency ω2

y is a
constant here, and one can have the simple exponential atmosphere and the self-
gravitating slab profiles in mind when ρ0 coefficients appear.

Tracking the Cowling and Jeans terms As we have seen in the previous section,
when deriving the wave equation the calculations were long. We saw also that the
Cowling and Jeans terms have important similarities, due to the fact that the equi-
librium and linearized Poisson equations are formally identical. Therefore, when
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combining the Poisson and themomentumconservation equations, after a fewmanip-
ulations it becomes difficult to distinguish coefficients stemming from the Cowling
or the Jeans term, while it would be useful for the interpretations. To keep track of the
origin of the numerous terms that appear, I decided to place artificially two factors,
εC and εJ in the force operator according to

�F
(�ξ
)

= −�∇ p1 + εCρ1�g0 + εJρ0�g1. (8.90)

The Cowling approximation then corresponds to (εC, εJ) = (1, 0) while the Jeans
approximation is (εC, εJ) = (0, 1). Now, while this is an interesting idea per se,
in practice it is far less obvious to perform than it seems, because the coefficient εC
prevents some simplifications to occur when using the hydrostatic equilibrium…The
outcome is that tracking the Cowling term (and thus switching on and off the Jeans
approximation at any time) is far too costy. I will therefore put εC = 1. Keeping track
of the Jeans term with the coefficient εJ however, does not induce any additional
difficulty, and as we will see, it will turn out to be sufficient for our purpose here.

Governing matrix equation Let us rewrite the two main equations which lead us
to the wave equation in the previous section, namely the momentum conservation
(8.52) and Poisson equation (8.54):

⎧
⎪⎨
⎪⎩

εJ
ρ0
c2a

ĝ1x + ψ′′ + kρψ
′ + ω2−ω2

y

c2a
ψ = 0

ĝ′′
1x + εJω

2
0

ω2−ω2
y+εJω

2
0
kρĝ

′
1x − k2y

ω2−ω2
y+εJω

2
0

ω2−ω2
y

ĝ1x − 4πGω2

ω2−ω2
y
ψ′′ − 4πGω2

ω2−ω2
y

εJω
2
0

ω2−ω2
y+εJω

2
0
kρψ

′ = 0,

(8.91)
where I have used in addition the hydrostatic equilibrium in the form g0 = −c2akρ,
cf. relations (8.60). Any ordinary differential equation of order n can be rewritten as
a system of n first order equations. For example consider y′′ + ay′ + by = 0. As is
well known, the trick is to put y1 ≡ y and y2 ≡ y′, and rewrite this equation as

(
1 0
0 1

)
U ′ +

(
0 −1
b a

)
U = 0 where U =

(
y1
y2

)
, (8.92)

the first line being the definition of y2 and the second line is really the differential
equation. Here we have two second order differential equations that we transform
in such a way, and thus transform the system into a single (4 × 4) matrix first order
differential equation. Using the vector

V ≡

⎛
⎜⎜⎝

ψ
ψ′
ĝ1x
ĝ′
1x

⎞
⎟⎟⎠ , (8.93)
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we now rewrite (8.91) matricially as

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 − 4πGω2

�y
0 1

⎞
⎟⎟⎠ V ′ +

⎛
⎜⎜⎜⎝

0 −1 0 0
�y

c2a
kρ εJ

ρ0
c2a

0
0 0 0 −1

0 − 4πGω2

�y

ω2
0kρ

�Gε
εJ −k2y

�Gε

�y

ω2
0kρ

�Gε
εJ

⎞
⎟⎟⎟⎠ V = 0. (8.94)

The matrix on the left is very easy to invert: one just needs to change the sign in the
only non diagonal term. Multiplying on the left by this inverse matrix, we have

dV

dx
= A(x)V

where

A(x) =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

−ω2−ω2
y

c2a
−kρ −εJ

ρ0
c2a

0
0 0 0 1

− 4πGω2

c2a
− 4πGω2

ω2−ω2
y+εJω

2
0
kρ k2y − εJk2J − εJω

2
0

ω2−ω2
y+εJω

2
0
kρ

⎞
⎟⎟⎟⎟⎠

.

(8.95)

(Matrix Equation—Full Gravity, Isothermal)

The matrix A contains one singularity, because of the possibly vanishing denomina-
tors. Once εJ is set back equal to one, as it should, it corresponds to the frequency
ω2 = ω2

G given by (8.55), as it appears in the denominators. This is how the singular
frequency of the wave equation appears in this matricial approach.

Now, the important point to notice is that to derive (8.95) we only used the hydro-
static equilibrium, and not the Poisson equation of the equilibrium state. Therefore
this equation is valid for any isothermal atmosphere, be it the exponential atmosphere,
the self-gravitating slab, or a slab embedded in an external non-uniform background.

8.3.2 Solutions

We can now take advantage of the literature dealing with matrix differential equa-
tions, from themathematics community naturally, for example Tracy (2016), but also
from many other fields of physics, for example formally this potentially vanishing
denominator is like propagators in Quantum Field Theory. We know that in the most
general case, in which the coefficients of A(x) depend on x , there is no easy general
rule to solve the problem. However, in the simplest case in which the matrix A has
constant coefficients, the problem can be solvedmaking use of thematrix exponential
exp x A, as we shall see in the next section. There are several ways of analysing the
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solutions of (8.95) using for example Dyson series or Magnus expansions. One way
of expliciting formally the solution is (Aslangul 2011)

V (x) =
[
11 +

∫ x

0
dx1A(x1) +

∫ x

0
dx1

∫ x1

0
dx2A(x1)A(x2) + . . .

]
V (0) (8.96)

where the nth term is n integrals of the product of n matrices A evaluated at different
positions. To use this formula, one should better change the basis and work with the
following vector V instead of (8.93)

⎛
⎜⎜⎝

ψ
ĝ1x
ψ′
ĝ′
1x

⎞
⎟⎟⎠ (8.97)

because in this case the matrix A has the form
(
0 1
B C

)
(8.98)

where the two upper blocks are simply 0 and the identity matrices, while B andC are
not trivial. The point is that this block shape eases greatly the calculation of products
of A, which is the essential complication of formula (8.96). But in fact, the problem
with this expansion is that there is no reason a priori for the terms to be ordered,
so that truncating even at a high order does not guarantee that the approximation is
good.

Instead, I propose to proceed as follows. Define the parameter9

r0(x) ≡ εJ
ω2
0(x)

ω2 − ω2
y

, (8.99)

so that matrix A may be expressed as

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

−ω2−ω2
y

c2a
−kρ −ω2−ω2

y

4πGc2a
r0 0

0 0 0 1

− 4πGω2

c2a
− 4πGω2

ω2−ω2
y

kρ

1+r0

ω2
y−(ω2−ω2

y)r0
c2a

− r0
1+r0

kρ

⎞
⎟⎟⎟⎟⎠

. (8.100)

Now, consider the full case where εJ = 1. The interesting thing with this formula-
tion is that whenever r0 becomes extremely small, this is formally as if εJ = 0, i.e.
this corresponds to situations in which the dynamics is governed by the Cowling
approximation, and as we have seen in Sect. 8.1, we can solve the problem in this

9As in the sections about the wave equation, we are working with ω2 �= ω2
y and discussing singu-

larities later.
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case. Therefore, in order to find explicit solutions beyond the Cowling approxima-
tion, we are going to perform a perturbative expansion in the small parameter r0,
which is indeed small when the density is small.

Here is another way of stating this. The singular frequency ω2
G , exhibited in

Sect. 8.2.2, is equal to ω2 − ω2
y + εJω

2
0 because we are considering an isothermal

fluid. The ω2 − ω2
y term corresponds to the usual sound waves, i.e. those computed

without taking into account the effect of the perturbation itself on the background,
while the εJω

2
0 term is the correction to this neglect (the εJ parameter shows that it

directly comes from the Jeans term). Thus, the parameter r0 is simply the measure
of the relative importance of the contribution of the Jeans term. When we are here
going to perform an expansion in r0, it means that we are going to study the correction
induced by perturbations on the background but for a wealky dense medium.

Finally, the importance of working with the vector (8.93), instead of (8.97) for
instance, is that as we will see, what will matter in this approach is the matrix
exponential of A which has a simple form with this vector while it does not with the
other.

8.3.3 Revisiting and Completing the Analysis of the
Exponential Atmosphere

Solving Eq. (8.95) perturbatively about the solution from the Cowling approxima-
tion is possible both in the exponential atmosphere and the self-gravitating slab
models that we have solved in Sect. 8.1. However I will only focus on the expo-
nential atmosphere here, because it lightens the calculations while presenting all the
aspects of the method.

8.3.3.1 General Expression

In the exponential atmosphere case

r0 = rce
− x

L0 (8.101)

where rc is the dimensionless and x-independent parameter

rc ≡ εJ
ω2
c

ω2 − ω2
y

. (8.102)
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Because the density profile ρ0(x) is decreasing, |r0(x)| ≤ |rc| for all x . Therefore, for
a given choice of parameters such that |rc| < 1,wemay develop, at any position x , the
expression of A(x) given by (8.100) in powers of rc using the identity (1 + x)−1 =∑∞

n = 0(−1)nxn , valid for |x | < 1. Doing so yields

A(x) = A0 + rce
− x

L0 A1 +
∞∑

n = 2

rnc e
−n x

L0 An≥2 (8.103)

where the Ai are the following constant matrices:

A0 =

⎛
⎜⎜⎜⎝

0 1 0 0

−ω2−ω2
y

c2a
−kρ 0 0

0 0 0 1
− 4πGω2

c2a
− 4πGω2

ω2−ω2
y
kρ k2y 0

⎞
⎟⎟⎟⎠ , (8.104)

and

A1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 −ω2−ω2
y

4πGc2a
0

0 0 0 0

0 4πGω2

ω2−ω2
y
kρ −ω2−ω2

y

c2a
−kρ

⎞
⎟⎟⎟⎟⎠

, (8.105)

and

An≥2 = (−1)nkρ

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 − 4πGω2

ω2−ω2
y
0 1

⎞
⎟⎟⎠ . (8.106)

The matrix A0 is the matrix one obtains in the Cowling approximation, for r0 = 0.
The upper right block is the null matrix because in this case the equation of motion
is decoupled from the linearized Poisson equation, and we recover the fact that the
equation is of second order only. Let us look for solutions V of the form (Holmes
2013)

V (x) = V0(x) + rcV1(x) + O (r2c
)
, (8.107)

V0 being the solution in the Cowling approximation. In terms of initial conditions
this imposes, to first order in rc, that

V (0) = V0(0) + rcV1(0). (8.108)
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Then plugging these linearized expressions (8.103) and (8.107) of A and V in
Eq. (8.95) leads to zeroth order in rc

dV0

dx
= A0V0 , (8.109)

(Constraint on the 0th order)

and to first order in rc
dV1

dx
= A0V1 + A1V0e

− x
L0 . (8.110)

(Constraint on the 1st order)

The pleasant property of the exponential atmosphere model is that A0 has constant
coefficients, so that these two equations may be solved explicitly.

The solution of (8.109) reads

V0(x) = ex A0V0(0) (8.111)

where ex A0 is the matrix exponential of A0 (explicit expression (8.130) derived
below), and V0(0) is the initial condition vector for V0, not to be confused with
V (0), both being linked by relation (8.108).

Equation (8.110) constitutes an inhomogeneous problem, i.e. with a source term.
Namely, consider an equation of the form

dU

dx
= BU + f (x) (8.112)

with a given constant matrix B, a given x-dependent vector f (x), and a given initial
condition U (0). Its solution is given by (e.g. Tracy 2016)

U (x) = exBU (0) + exB
∫ x

0
e−sB f (s)ds. (8.113)

Now Eq. (8.110) corresponds to (8.112) withU ≡ V1, B ≡ A0 and f (x) ≡ A1V0(x)
e− x

L0 . Finally using (8.111) in this expression of f (x) we obtain

V1(x) = ex A0V1(0) + ex A0

∫ x

0
e−s A0 A1e

sA0V0(0)e
− s

L0 ds. (8.114)

Here too, beware of the initial conditions: V1(0) is the initial condition vector for
V1, not to be confused with V (0), both being linked by relation (8.108). All that is
left to do now is to plug in (8.107) the expressions of V0(x) and V1(x) just deduced.
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Doing so, we shall use the initial condition (8.108), in particular to replace the V0(0)
vector in (8.114) by V (0), since we are working up to order one in rc. We obtain

V (x) = ex A0

[
11 + rc

∫ x

0
Z1(s)ds

]
V (0) (8.115)

(Solution up to 1st order in rc � 1)

where

Z1(s) ≡ e− s
L0
(
e−s A0 A1e

sA0
)

. (8.116)

The identity matrix corresponds to the Cowling approximation, and the second part
is the correction induced by the Jeans term. This result is valid in the ‘Cowling
dominated’ regime rc � 1. The first exponential in (8.116) is the usual exponential
function while the others are matrices. Hence facing that expression, the first thing
to do is to check whether the matrices A1 and esA0 commute. If so, we would have10

in the integrand e−s A0esA0 = e−s A0+s A0 = Id and thus the expression of V1 would be
greatly simplified. Unfortunately it is not the case.

What does this development at higher orders look like? At order two, the same
procedure yields

V (x) = ex A0
[
11 + rc

∫ x

0
dx1Z1(x1) + r2c

[∫ x

0
dx1

∫ x1

0
dx2Z1(x1)Z1(x2) +

∫ x

0
dx1Z2(x1)

]]
V (0)

(8.117)
and in fact all orders are a sum of products of the generalization of (8.116), namely

Zn(s) ≡ e− ns
L0
(
e−s A0 Ane

sA0
)
. (8.118)

Hence we may get the solution not only for rc � 1 but for rc < 1 by increasing the
order of the development, if needed. Note that this infinite expansion is very different
from the formal solution (8.96) because now the terms are ordered, with respect to
the parameter rc, while in (8.96) we do not control a priori the amount of information
lost when stopping the development at a finite order.

8.3.3.2 Revisiting the Cowling Case

Expression (8.118) shows that the only information needed to have the solution for
rc < 1 is the exponential of the matrix x A0, for all x > 0, i.e. to find the solution in
the Cowling approximation given by (8.111). Let us now explicit it. We have

10This is not a trivial statement per se, since in general eAeB �= eA+B , but it is the case when A and
B commute. Here the matrices −s A0 and s A0 clearly commute.
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x A0 = x

⎛
⎜⎜⎜⎝

0 1 0 0

−ω2−ω2
y

c2a
−kρ 0 0

0 0 0 1
− 4πGω2

c2a
− 4πGω2

ω2−ω2
y
kρ k2y 0

⎞
⎟⎟⎟⎠ . (8.119)

The determinant of a block triangular matrix is simply the product of the determi-
nant of its diagonal blocks. Therefore the characteristic polynomial of x A0, namely
P(λ) ≡ |x A0 − λ11|, is directly given by

P(λ) =
(

λ2 + xkρλ + x2
ω2 − ω2

y

c2a

) (
λ2 − x2k2y

)
. (8.120)

The eigenvalues of x A0 are the roots of P(λ). For the first two, we recover as in
Eq. (8.15), the need to discuss the sign of the discriminant

� ≡ x2
(
k2ρ − 4

ω2 − ω2
y

c2a

)
. (8.121)

When � > 0, the two additional eigenvalues are distinct and real,

λ1,2(x) = x

2

⎛
⎝−kρ ±

√
k2ρ − 4

ω2 − ω2
y

c2a

⎞
⎠ , (8.122)

when � < 0 they are distinct and complex,

λ1,2(x) = x

2

⎛
⎝−kρ ± i

√
4
ω2 − ω2

y

c2a
− k2ρ

⎞
⎠ , (8.123)

and when � = 0 they are real and degenerate

λ1,2(x) = − xkρ

2
. (8.124)

The last two roots are clearly given by

λ3,4(x) = ±xky . (8.125)

It is out of the scope of this manuscript to discuss the stability of the system in
view of the eigenvalues of matrix A, but as we see here the eigenvalues are position
dependent, in a trivial way in this simple example, but which gives a hint that in
more general cases they may have different signs in the various regions of the slab or
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atmosphere. The positions at which such inversions occur are surely of importance
to characterize the evolution of the system.

The � < 0 case All four eigenvalues are distinct, so that we know that x A0 is
diagonalizable, which is very enjoyable since the exponential of a diagonalizable
matrix is easy to compute. We have

x A0 = PD(x)P−1 (8.126)

where D is the diagonal matrix composed of the eigenvalues λi above, and P is
composed of the eigenvectors. The important point is that it is block triangular

P =
(
P1 0
P2 P3

)
(8.127)

so that its inverse is simply given by

P−1 =
(

P−1
1 0

−P−1
3 P2P

−1
1 P−1

3

)
(8.128)

and the computation of the matrix exponential, according to

ex A0 = PeD(x)P−1, (8.129)

is also greatly simplified by this fact. These computations finally result in

ex A0 =
(
E1 0
E2 E3

)
(8.130)

(Explicit Expression for the Solution (8.111))

where

E1(x) = e− kρ
2 x

(
cos
(
xδ
2

)+ kρ

δ
sin
(
xδ
2

)
2
δ
sin
(
xδ
2

)

− 2
δ

ω2−ω2
y

c2a
sin
(
xδ
2

)
cos
(
xδ
2

)− kρ

δ
sin
(
xδ
2

)
)

(8.131)

and

E2(x) = E2,1 e
ky x + E2,2 e

−ky x + E2,3 e
x
2 (b+iδ) + E2,4 e

x
2 (b−iδ) (8.132)

where E2,i are simply constant matrices, depending on the parameters δ, ky and kρ

in a non-trivial way which is not enlightening to explicit here, and

E3(x) =
(

cosh
(
kyx
)

1
ky
sinh

(
kyx
)

ky sinh
(
kyx
)

cosh
(
kyx
)
)

(8.133)
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where we put

δ ≡
√
4
ω2 − ω2

y

c2a
− k2ρ, (8.134)

which is well defined since we are exploring the� < 0 case here. These expressions
may look involved, but they are in essence simple. Since trigonometric functions,
hyperbolic or not, are only exponentials, the matrix ex A0 is really only a linear com-
bination of exponentials. Thus we are sure that expressions like (8.115), and even at
all orders with (8.118), can be easily computed fully though I must admit it is pretty
lengthy to do.

Finally, it is important to notice thatwith the expression (8.130) of ex A0 we recover,
as we should, the Cowling solution. It corresponds to the first component of (8.111),
namely

ψ(x) = a1(x) ψ(0) + a2(x) ψ′(0) (8.135)

where {
a1(x) = e− kρ

2 x
[
cos
(
xδ
2

)+ kρ

δ
sin
(
xδ
2

)]

a2(x) = e− kρ
2 x 2

δ
sin
(
xδ
2

)
.

(8.136)

One can easily check that this expression is indeed exactly the expression (8.21) that
we obtained without this matrix formulation, once the integration constants c1 and
c2 are expressed in terms of ψ(0) and ψ′(0), by evaluating (8.21) and its derivative
at x = 0.

8.3.3.3 The Discrete Spectrum

To get the discrete spectrum we need to consider ψ and impose the boundary con-
ditions.11 With the expressions (8.105) of A1 and (8.130) of ex A0 plugged into the
expression (8.115) of V (x), we have that ψ can be written as

ψ(x) = a1 ψ(0) + a2 ψ′(0) + rc
{
b1 ψ(0) + b2 ψ′(0) + b3 ĝ1x (0) + b4 ĝ′

1x (0)
}

(8.137)

(ψ(x) beyond the Cowling approximation)

where the first two terms are the Cowling solution (8.135), and the bi (x) are the
first order corrections. The latter coefficients are in essence simple, since they are
just integrals of exponentials, but are very lengthy (e.g. b2 below in (8.141)). Rather
than expliciting them in the general case which will not be very enlightening, let
us choose boundary conditions which will simplify greatly the calculations, but still
induce a non vanishing correction to the Cowling case to be interesting for the present

11Recall that ξ̂x is proportional to ψ so that with the boundary conditions we are going to consider
shortly, we may use ψ rather than ξ̂x to determine the discrete spectrum.
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discussion. We will also choose the same boundary conditions on ψ as in Sect. 8.1
so that we may directly compare our results to it.

Illustrative exampleLet us consider here the three following conditions (ψ′(0) being
left arbitrary)

V (0) ≡

⎛
⎜⎜⎝

ψ(0)
ψ′(0)
ĝ1x (0)
ĝ′
1x (0)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
ψ′(0)
0
0

⎞
⎟⎟⎠ (8.138)

together with the following fourth condition imposed at the boundary x = xt

ψ(xt ) = 0 (8.139)

in order to be able to compare with the previous study of Sect. 8.1. These now yield
the quantization condition

a2(xt ) + rcb2(xt ) = 0 , (8.140)

keeping inmind that in the Cowling approximation this conditionwas (8.22) which is
indeed a2(xt ) = 0. In this simple case the only remaining coefficient to be computed
is b2(x), and thanks to the numerous zeros in the matrices A1 and ex A0 entering the
calculation, the only terms remaining to compute are

b2(x) = −ω2 − ω2
y

4πGc2a

{
e11,1(x)

∫ x

0
e− s

Lext e12,1(−s)e12,2(s)ds + e12,1(x)
∫ x

0
e− s

Lext e22,1(−s)e12,2(s)ds

}

(8.141)
where ei j,n denotes the element at the ith row and jth column of the matrix En in
expression (8.130). Performing these integrations, we obtain

b2(x)= 1
δ

ω2

ω4−ω2
ρω

2
y
e−kρx

{(
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y

)
δ
ky
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(
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kρ
ω2

ρ cosh
(
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)

+ 1
2

δ
kρ
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(
xδ
2

) [(
ω2 − 2ω2

ρ

)
e

kρx
2 − ω2e− kρx

2

]

− 1
2 sin

(
xδ
2

) [(
5ω2 − 2ω2

y − 2ω2
ρ

)
e

kρx
2 + (ω2 − 2ω2

y

)
e− kρx

2

]} (8.142)

where
ω2

ρ ≡ c2ak
2
ρ. (8.143)

We may finally rewrite the quantization condition (8.140) explicitly, in the as-
symmetric-as-possible form
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(
xt δ
2

)}
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(8.144)

(Full quantization condition—Low density Atmosphere (rc � 1))

At first sight it seems that there is a divergence for ky → 0 because of the δ
ky

fac-
tor. In fact, if expressed as sinh and cosh as in formula (8.142), we can see that
since sinh

(
kyx
)
/ky → x as ky → 0, there is no such divergence. Similarly, another

divergence seems to appear: the overall factor contains the denominator ω4 − ω2
ρω

2
y ,

which seems to indicate that ω2 = ωρωy = kρkyc2a is a singularity. But recall that this
derivation was made in the � < 0 case given by (8.121), so that12 we have in partic-
ular ω2 > kykρc2a . While this is not a singularity that can be reached, it is interesting
to note that the closer ω2 is to kykρc2a , the more significant the correction becomes.

Does the Jeans term have a stabilizing or destabilizing effect, i.e. are the eigen-
frequencies ω2

n larger or smaller than those deduced in the Cowling approximation?
In fact, what the richness of formula (8.144) tells us is that we cannot answer sim-
ply this question. Indeed, the sign of the correction due to the Jeans term may vary
from one system to another since it depends on xt and on kρ. Also, the Jeans term
does not stabilize all perturbations in the same way since the correction depends on
ky . Finally, the fact that the parameter kyxt matters is yet another evidence, as in
Fig. 8.3, that what happens (size and growth rate of clumps forming) perpendicularly
to the stratification is very much affected by what happens in the direction of the
stratification.

Expression (8.144) is complicated and contains a lot of information. It deserves
a long and thorough study dedicated to it, for example by analyzing the various
regimes it nicely exhibits, governed by parameters kρxt , δxt and kyxt . This is left for
future work, but in order to get a first feeling of the content of this relation and of
how one may explore it, let us now consider the physically interesting limit in which
the boundaries may be considered as ‘far’, as illustrated in Fig. 8.5.

Far Boundaries: The kρxt  1 limit Distributing the e− kρxt
2 factor in front of the

bracket in (8.144), we can see that this expression may be simplified greatly in the
regime kρxt  1. Without doing a rigorous13 Taylor expansion, we may say that the
exponential factors will suppress other terms so that what remains is

12Indeed,� < 0 is equivalent to ω2

c2a
− k2y − k2ρ

4 > 0, but since ω2

c2a
− k2y − k2ρ

4 = ω2

c2a
− kykρ − (ky −

kρ

2 )2 and that (ky − kρ

2 )2 ≥ 0, we have ω2

c2a
− kykρ > 0.

13My precaution in the formulation comes from the fact that δ contains kρxt , and the competition
of the eky xt factor has to be assessed properly. At this point I will just say the ky has to be small
enough, leaving the rest for future work.
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Fig. 8.5 Illustration of a perturbed exponential atmosphere in which the boundary x = xt , cor-
responding to the distance after which the perturbation is vanishing, may be considered as far
(kρxt  1), as explored in the text. In black is the equilibrium density profile, and in red the per-
turbed one. The dashed line recalls that the steepness of such an exponential atmosphere is governed
by the speed of sound in themedium ca and the value of the gravitational field gext imposed (directed
from right to left in this illustration)

sin

(
xt δ

2
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4
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ρ) cos

(
xt δ

2

)]
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(8.145)
Because of the eky xt factor, we should also consider this relation to be valid for
ky � kρ, which is anyway the regime of interest since we expect the Jeans term to be
negligible for perturbations of small wavelengths. Now, the great property of relation
(8.145) is that it is a linear combination of sines and cosines, thus it is in fact simply
a phase-shifted sine. Indeed, using the exponential forms of sine and cosine gives
the identity

a sin x + b cos x =
√
a2 + b2 sin (x + ϕ) (8.146)

the phase being given by

ϕ = arctan
b

a
(8.147)

for a > 0. Then the quantization condition simply reads

x + ϕ = nπ (8.148)

while it was x = nπ in the Cowling approximation. In this case this gives explicitly
(still at first order in rc, using in particular the fact that arctan ε ∼ ε for ε � 1)
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ω2
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(
ω2
n − 2ω2

ρ

)

ω4
n − ω2

yω
2
ρ

]
= nπ. (8.149)

(Quantization—Low density (rc � 1), Far Boundaries (kρxt  1), Large
y-wavelength (ky � kρ))

Note that for rc = 0 we do recover, as we should, the discrete spectrum deduced in
the Cowling approximation

xtδ

2
= nπ, (8.150)

andwe see that the corrective term (with respect to Cowling) goes asω−2 asω2 → ∞
(do not forget the ω2 dependence in rc), showing that the higher the frequency, the
better the Cowling approximation. Equation (8.149) is an equation on ω2

n , which is
involved since δ containsω2

n .Assuming that the solutionwill be only slightlymodified
with respect to the Cowling case, let us solve it perturbatively, in (kρxt )−1 � 1
now, by putting ω2

n = ω2
n,0 + (kρxt )−1ω2

n,1 where ω2
n,0 is the discrete spectrum in the

Cowling case (8.23), and solving for ω2
n,1. The discrete spectrum may finally be

explicited as

ω2
n = ω2

n,0

⎡
⎢⎣1 + 16πGρc

c2ak
2
ρ

4π2n2

k3ρx
3
t

7 − 4π2n2

k2ρx
2
t(

1 + 4π2n2

k2ρx
2
t

)3

⎤
⎥⎦ (8.151)

(Discrete Spectrum—Low density (rc � 1), Far Boundaries (kρxt  1), Large
y-wavelength (ky � kρ))

where we have used ky � kρ to be consistent with the assumptions made. Now
the dependence on n is explicit. For large n, the correction goes as n−2, which is
consistentwith the idea that theCowling approximation is better for high ordermodes
(cf. Sect. 7.3.2). Finally, we anticipated above that unfortunately we cannot draw a
general rule on the stabilizing effect of the Jeans term, and this is an example of this
fact since the sign of the correction depends on the mode. Modes with n greater than
the floor of

√
7kρxt/2π are destabilized by the Jeans term (negative contribution)

while others are stabilized (positive contribution). However, this number marking
the transition is large since we are in the ‘far boundaries’ regime, and since the value
of the correction is smaller as n increases, this destabilization will be small. Hence,
in this analysis, valid for modes with small ky , we are led to the conclusion that the
Jeans term essentially has a stabilizing effect. It is interesting to see that from our
local analysis represented in Fig. 8.4 we observe the same trend for small ky .Whether
this is a general feature remains to be assessed.

http://dx.doi.org/10.1007/978-3-319-61881-4_7
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Chapter 9
Further Ongoing Works

Clearly, a lot can still be explored further already in what I have presented so far.
But I have also explored two other paths, constituting two important generalizations:
(i) cylindrical geometry in order to explore the stability of cosmic filaments and
(ii) taking buoyancy fully into account in order to explore the importance of this
physical process, which is paramount in stellar dynamics. After presenting them, I
will finally mention key interrogations brought by the experience gained through the
above analysis and that must be tackled to go further to optimize the approach.

9.1 Stability of Cosmic Filaments

Cylindrical symmetry Now that we have explored the plane symmetric equilibria,
relevant to model cosmic walls and sheets, it is natural to focus on cylindrically sym-
metric ones, relevant tomodel cosmic filaments. In the following, the notation will be
standard, by denoting the radial, azimuthal and longitudinal coordinates respectively
R, θ and z, and their corresponding unit vectors R̂, θ̂ and ẑ. This stratification is still
one dimensional, but several very important differences arise due to the particular
geometry. The differential operators entering the force operator now contain 1

R fac-
tors, which make the R = 0 positions (constituting the z axis) particular points, and
therefore necessitate great attention. This was to be expected, comparing the planar
and cylindrical equilibrium states in Chap. 6 already. In terms of variables, working
with Rξ̂R will thus often be more convenient. Also, one always has to keep in mind
that the unit vectors are position dependent, which may be tricky in some situations.
Finally, the two dimensions transverse to the stratification are fundamentally differ-
ent: the longitudinal direction z has an infinite extent, while the azimuthal θ direction
is closed. For this reason, in the decomposition (9.2) of the displacement vector �ξ
below, the wavenumber kz associated with z is a continuous variable, like kx and ky

in the planar case, while the numberm associated with θ is quantized. This makes the
cylindrical symmetry particularly interesting because it is thus really intermediate

© Springer International Publishing AG 2017
J.-B. Durrive, Baryonic Processes in the Large-Scale Structuring of the Universe,
Springer Theses, DOI 10.1007/978-3-319-61881-4_9
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between the spherical (both transverse dimensions are closed) and the planar (no
closed dimension) symmetries.

The displacement vector We now have the two following properties.

(i) Due to the translation invariance in t , z and θ of the equilibrium state, we may
Fourier transform in these variables, so that themost general displacement vector
may be written as

�ξ = ξ̂ ei(mθ+kz z−ωt) (9.1)

but beware of this notation: since unit vectors in cylindrical coordinates depend1

on R and θ , we have ξ̂ (R, θ, z) and not ξ̂ (R) even though its components depend
on R only:

ξ̂ (R, θ, z) = ξ̂R(R)R̂ + ξ̂θ (R)θ̂ + ξ̂z(R)ẑ. (9.2)

(ii) Due to the cylindrical symmetry of the equilibrium system, the gravitational
acceleration is radial so that ∇�0 is parallel to R̂. Thus it does not appear in the
θ and z components of the equation of motion (7.23), which may be written, in
the absence of magnetic fields:

ρ0
∂2ξθ

∂t2 = − 1
R ∂θ p1 − ρ0

1
R ∂θ�1 = − 1

R ∂θ (p1 + ρ0�1)

ρ0
∂2ξz

∂t2 = −∂z p1 − ρ0∂z�1 = −∂z (p1 + ρ0�1) .
(9.3)

The second set of equalities stems from the cylindrical symmetry of the equilib-
rium density (∂θρ0 = 0 and ∂zρ0 = 0). From these two equations, it is clear that
applying ∂z to the first, and ∂θ to the second, we have the following identity

∂2

∂t2

(
∂zξθ − 1

R
∂θξz

)
= 0 (9.4)

everywhere and at any time. Then, given the above decomposition of �ξ we obtain

ξ̂θ = m

R

1

kz
ξ̂z . (9.5)

Needless to say that this relation greatly simplifies the calculations. In fact, it is
not surprising to have a universal relation between the non radial components,
because in essence this system is still one-dimensional: the stratification is only
along R, just like it was only along x in the planar situation. And indeed, this
relation was deduced solely from the fact that the equilibrium depends on R
only.

Wave equation Then, following the same steps as I have taken in the planar case
of Chap.8, I have arrived at the wave equation, equivalent of Eq. (8.58), expressed

1More precisely, the only non zero derivatives are ∂θ R̂ = θ̂ and ∂θ θ̂ = −R̂.

http://dx.doi.org/10.1007/978-3-319-61881-4_7
http://dx.doi.org/10.1007/978-3-319-61881-4_8
http://dx.doi.org/10.1007/978-3-319-61881-4_8
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using the variable χ ≡ Rξ̂R . It is a fourth order differential equation whose highest
order term has the singularity

ω2
G = ω2

⊥ − 1

R

(ω2
⊥)′

k2
⊥

− (ω2
⊥)′′

k2
⊥

− ω2
0 (9.6)

(Singular Frequency—Cylindrical)

which corresponds to (8.55) in the planar case, and where

k2
⊥ = m2

R2
+ k2

z (9.7)

corresponds to k2
y in the planar case, i.e. to thewavenumber in the direction transverse

to the stratification which is now the radial direction. But note that there is a crucial
difference between ky and k⊥ here: k⊥ is a function of R. Therefore, while the
steps to follow to reach the wave equation are really the same as for the planar case
detailed previously, the fact that the gradient operator brings in 1/R terms and that
k2
⊥ = k2

⊥(R), every time we differentiate, the number of terms increases compared to
the planar case. In the end, thewave equation in the cylindrical case is of the form ‘the
planar coefficients plus terms involving 1/R and k⊥’, thus making the coefficients
roughly twice longer…! The point of this remark is to insist on the methodological
importance of having started this discussion with the planar case, which turns out to
be a necessity. Once the planar case is well understood, the cylindrical case appears
far simpler since one then has only to focus on the additional terms induced by
geometry.

In Goedbloed and Poedts (2004) the authors study MHD instabilities in cylindri-
cally symmetric stratifications (in the Cowling approximation), because a tokamak
or an accretion disc of large radius can be described, in a first approximation, as being
straight. Without discussing the details, let me simply show what cylindrical sym-
metry changes to the MHD wave equation (7.45) we discussed earlier. It becomes of
the form2

d

d R

(
N

RD

dχ

d R

)
+ Qχ = 0. (9.8)

The point I want to stress is that position R = 0 plays a special role: it is a singularity
of the wave equation! However, the authors insist that this singularity is of completely
different nature from the physical singularities associated with the two continuous
spectra, the slow {ω2

S(R)} and the Alfvn {ω2
A(R)} ranges. This distinction is subtle

and important. In fact, it may also be confusing, as in the literature ‘singularity’
may not always be used in the same sense. Finally, note that the ordering of the
apparent and genuine singularities remains valid, at every radius R, but another
important difference compared to the planar case is that no matter how small the

2Goedbloed and Poedts (2004) call it a generalized Hain-Lüst equation after Hain and Lüst (1958).

http://dx.doi.org/10.1007/978-3-319-61881-4_8
http://dx.doi.org/10.1007/978-3-319-61881-4_7
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Fig. 9.1 Cross section of the solar interior: This figure is complementary to Fig. 7.1 which rep-
resented acoustic oscillations, called p-modes. In this case the buoyancy-driven oscillations are
represented, called g-modes. Continuous lines represent the direction orthogonal to wave fronts.
As we can see, these modes propagate in the center of the star, on the contrary to p-modes which
propagate close to the surface, which is why detecting g-modes would constitute a probe of the
sun’s interior (fromGough et al. 1996).What would such oscillations look like in a cosmic filament,
and what dynamical role may they play?

inhomogeneity, the slow turning point frequencies overlap the slow continuum and
the fast turning point frequencies overlap the (formal) fast continuum, because of
the geometrical singularity R = 0. In the hydrodynamical context of interest here,
I have not reached that level of detail yet, but what is already worth noticing is that
the R = 0 singularity appears in the singular frequency ω2

G , with possibly a negative
sign…A lot of interesting physics is within sight.

9.2 Buoyancy: g-Modes and Convection

Buoyancy is a key ingredient to understand the dynamics of stars, because it gives
rise to convection, but is also important because it gives rise to oscillations (g-modes,
cf. Fig. 9.1) which, when they are observed, will constitute a probe of stellar interiors.
How about in the cosmological context? The importance of the convective zone in
stars is that it redistributes the energy very efficiently. In the pristine cosmic web,
in which magnetic fields are extremely weak, convection may play a non neglible
role.3

3Note that the importance of convection in the intracluster gas of galaxy clusters has been studied
by several authors. See for instance Chandran and Dennis (2006) and Gupta et al. (2016), and
references therein.

http://dx.doi.org/10.1007/978-3-319-61881-4_7


9.2 Buoyancy: g-Modes and Convection 173

Closure relation for perturbations As discussed in Sect. 2.3, in order to close
the infinite hierachy of equations resulting from taking the various moments of the
Boltzmann equation, one needs to add a closure relation. Usually the purpose of this
relation is to close the equation governing the second moment of the distribution
function, i.e. the energy equation. The closure thus usually consists in making an
assumption on the third moment of the distribution function, namely the heat flow.
The relevance of a closure relation thus depends on the timescales of the processes
involved. For instance for fast dynamical processes, i.e. faster than heat conduction,
an adiabatic (isentropic) closure is relevant, while for slow processes, temperature
gradients do not exist and an isothermal closure is appropriate.

Here, let us consider that the timescales of the perturbations, i.e. the oscillation
period if stable and growth time if unstable, are sufficiently short so that no heat is
exchanged between neighbouring fluid elements. Then the evolution of the perturba-
tionsmaybe considered as adiabatic. In this case, using the laws ofThermodynamics,
it can be shown (cf. e.g. Thompson 2006) that the equation expressing the absence
of heat δQ = 0 becomes the following relation between the Lagrangian variation of
pressure δp and the Lagrangian variation of density δρ:

δp

p0
= γad

δρ

ρ0
(9.9)

(Adiabatic Fluctuations)

where, in general γad �= γ the polytropic exponent from the polytropic equation
of state (6.4) of the equilibrium. Equation (9.9) is written in terms of Lagrangian
perturbations δρ and δp. Let us rewrite it in the Eulerian variables ρ1 and p1. The
link between the two descriptions is given by (cf. e.g. Cox 1980)

δρ = ρ1 + �ξ · ∇ρ0

δp = p1 + �ξ · ∇ p0.
(9.10)

Now, defining the speed of sound

c2ad ≡ γad
p0

ρ0
, (9.11)

which is different from the speed c2a ≡ γ
p0
ρ0

defined in the equilibrium state (6.6)
because γad �= γ in general, expression (9.9) may be rewritten

p1 = c2adρ1 + γad p0 �ξ · A (9.12)

(Closure relation—With convection)

where the vector

A = ∇ρ0

ρ0
− ∇ p0

γad p0
=

(
1 − γ

γad

) ∇ρ0

ρ0
(9.13)

http://dx.doi.org/10.1007/978-3-319-61881-4_2
http://dx.doi.org/10.1007/978-3-319-61881-4_6
http://dx.doi.org/10.1007/978-3-319-61881-4_6
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Fig. 9.2 Consider a plane stratifiedmedium, whose layers are labeled by the variable x . The density
profile of this stratification is ρstrat, and is governed by the parameter γ . Consider a volume element
that belongs to the layer at position x when at equilibrium. It is displaced by some perturbation
to the layer at position x + ξ . The density ρelement of the volume element evolves according to
a law governed by the parameter γad, which reflects how efficient the heat transfers are on the
typical timescale of this displacement. When the volume element is in its equilibrium position, the
buoyancy it undergoes is counterbalanced by gravity which is why it remains at position x in the
absence of perturbations. However, once displaced, it is in a new environment in which the forces
acting on it do not necessarily balance anymore. Three cases are possible: (i) γ = γad so that the
volume element remains at x +ξ , and the atmosphere is said to be convectively neutral, (ii) γ > γad
so that buoyancy moves the volume element towards upper layers, giving rise to convection and
(iii) γ < γad so that the volume element is brought back towards its equilibrium position, giving
rise to oscillations, the g-modes, as in Fig. 9.1

is a well known quantity in stellar physics, linked to the Brunt-Väisälä frequency
as N 2 ≡ −Ag0 which gives the timescale associated with buoyancy (frequency of
oscillations or growth rate of convective instability). The second equality is valid
in the case of a polytrope of exponent γ and indicates that stability depends on
the ordering between γ and γad. Convective instability is governed by the so-called
Schwarzschild criterion, illustrated in Fig. 9.2.

9.3 Refining the Question and the Approach

It is a general feature that questions bring more questions, but fortunately the addi-
tional questions help framing and answering the initial ones. In the present case, the
question was (cf. Sect. 1.3): How does gravitational instability occur in stratified
media? What was already clear from the beginning is that in terms of objectives,
this question can already be subdivided into more questions such as: Under which
conditions may fragmentation occur, i.e. for a given model of filament for instance,
which ranges of parameters give rise to instability? What are the sizes of the clumps

http://dx.doi.org/10.1007/978-3-319-61881-4_1
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resulting from this fragmentation? What are their growth rates? Etc. But what was
not obvious, and that comes out as one of the main outcomes of the analysis per-
formed in this manuscript, is that to facilitate answering these questions the choice
of variable seems to be essential.

Which variable? In Sect. 7.1.1, we already discussed in general terms the difference
between the displacement vector and the primitive variables as we performed the
Lagrangian reduction: The displacement vector is more fundamental and contains
all the information about all perturbed quantities. We later pointed out, in Sect. 8.1.3,
that the equations governing different variables are fundamentally different, and
chose to privilege �ξ . A point that I did not discuss extensively here because it is
beyond our scope, is boundary conditions, but we may already get a feeling that the
choice of variables will also matter in this respect. Despite all this, it may seem like
the choice of variable is just a matter of convenience, i.e. of choosing the right tool to
reach the answer to our question faster or in a simplerway, just like it is naturallymore
adapted to work with cylindrical coordinates to describe a cylindrically symmetric
system for instance. The fragmentation of a structure does not physically depend
on how we describe it! But in fact, in Goedbloed and Poedts (2004) and Goedbloed
et al. (2010) the authors show that the choice of variable to describe perturbations
has heavy consequences because with one or the other, we do not describe the same
phenomena. For instance, they point out differences between primitive variables and
�ξ : one description is Eulerian while the other is Lagrangian, but what is more subtle
and crucial is the fact that in a description with �ξ , one misses a mode, namely the
entropymode, and also this descriptionmay not be generalized to dissipative plasmas
(see e.g. in their Sect. 12.2.1). These two descriptions are thus not equivalent, and are
more than mere changes of variables. Hence, the relevant analogy is not choosing
cylindrical coordinates to describe a cylindrically symmetric system, but it is rather
like the fact that a lot of information is lost when describing a plasma as a fluid
rather than kinetically for instance, as we saw in Chap. 2. Now, discarding some
information may be a good thing, as long as we get rid of the unnecessary one and
that we keep track of what we left behind. For example, in Goedbloed and Poedts
(2004) and Goedbloed et al. (2010), the authors argue that ignoring the entropymode
is all the better for their purpose.

We see that we clearly need to specify the role andmeaning of the variable we use.
For the present question of gravitational fragmentation, which is the most relevant
choice? I have not seen so far in the literature discussions on these aspects, for
example comparisons of the various approaches adopted in the works mentioned in
the introduction of Chap.7. At this point, I observe that various authors use various
variables: Pekeris (1938)workedwith the divergence of the displacement vector∇·�ξ ,
Goldreich and Lynden-Bell (1965) and Elmegreen and Elmegreen (1978) privilege
the perturbed potential φ1, Ledoux and Walraven (1958) a convenient potential for
homogeneous equilibria φ1 + p1/ρ0 and Breysse et al. (2014) the displacement itself
�ξ for example. It is particularly interesting, and intriguing, to note that Elmegreen
and Elmegreen (1978) derived an equation on φ1 only, of fourth order, but which
does not present a singular frequency like the ω2

G that we obtain in the present
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manuscript.My understanding at this stage on this point is that the perturbed potential
may not be the most suited variable since even if the system becomes clumpy, the
potential, being a global quantity, is only weakly affected and it may be that no sign
of instability appears in the equation governing it. However, so far I did not find
references performing comparisons of the scopes and results obtained with these
various approaches. In the same spirit, I am not sure at this stage of what exactly
ρ0�ξ , rather than �ξ , physically corresponds to. Is it really just a convenient change of
variable, or does it have a profound physical meaning? Interestingly this variable is
not natural in more general situations, e.g. when magnetic field is included, which
is why I suppose it is not common in the literature. Finally, how does this translate
in the spectral approach to gravitational fragmentation adopted in this manuscript?
Depending on the variable we choose, the governing operator is different, so the
spectrum is a priori not the same, and intriguing results might perhaps appear (as
hinted at in the footnote page 88)…

Focusing on ρ1 Following the steps of the ideal MHD literature, I have explored
gravitational fragmentation using the displacement vector, which seems a great idea
since it is a most fundamental variable. But could it be that this represents too much
information, and that working with ρ1 for instance is sufficient? And indeed, in
Sect. 7.1.1, this is the choice we have made in our ‘first approach to gravitational
fragmentation’. Studying the evolution of the perturbed density ρ1 seems physically
like the variable relevant for our purpose, since we are interested in the formation of
dense clumps. Now, as opposed to when we were in Sect. 7.1.1, thanks to the journey
we have undertaken, we may reformulate the problem in terms of spectral theory and
benefit from all the tools associated with it. Let us look at the wave equation (7.20)
as an eigenvalue problem for ρ1. First we need to explicit φ1 as a function of ρ1 by
using the integral form (7.8). Then, considering temporal normal modes ρ1 = ρ̂1eiωt ,
and using Poisson equation, we obtain

− ω2ρ̂1 = W(ρ̂1) (9.14)

where the operator W satisfies

W(ρ̂1) = �
(
c2a ρ̂1

) + 8πGρ0ρ̂1 − g0 · ∇ρ̂1 + ∇ρ0 · G
∫

ρ̂1
r − r′

|r − r′|3 d3r ′. (9.15)

This is a scalar eigenvalue problem in which the eigenvalue ω2 intervenes linearly.
Indeed, contrary to the eigenvalue problem 7.58 we focused on, we are now dealing
with the scalar variable ρ1, rather than the vectorial �ξ . The problem (9.14) is thus a
priori much simpler! However, the operatorW does not have a simple physical inter-
pretation of each term as the force operator F has. Also, it contains less information
than the vectorial one (7.58). For instance the pressure term �(c2aρ1) in (9.15) con-
tains the information on the fact that wave fronts are deviated by the stratification of
the speed of sound, but the pressure term �(c2a∇ · (ρ0�ξ)) in (7.58) not only contains
this information, but also informs us on the polarisation of the waves. As mentioned
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above, this loss of information may be an advantage, since the vectorial description
may be too much for a statement on stability in simple cases. However, for a more
general treatment of gravitational fragmentation, including magnetic field, convec-
tion, andmost importantly for the cosmological context, including flow, it is probably
more appropriate to pursue the analysis in the line of the ideal MHD literature, in
terms of �ξ , in order to benefit from the huge amount of results already obtained in
very complex systems.
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Chapter 10
Prospects

In this thesis, I have focused on twomajor questions of Cosmology andAstrophysics:
The origin of cosmological magnetic fields (part I) and the advent of gravitational
instabilities (Jeans, Rayleigh-Taylor and convection) in the Cosmic Web (part II).
The structuring of the Universe is fascinating, but obviously also very challenging.
The underlying physics is extremely rich and numerous phenomena occur simul-
taneously, in a complex interplay. The numerical approach nowadays developed by
many authors may embrace them collectively but the analytical approach really helps
disentangling the role of each process. It is fundamental to develop toy models to
explore these processes, first separately one by one, and then to study their interplay
and assess whether they hamper or enhance each other.

Already at this stage, with the work I have presented here, a lot of interesting and
practical results can be derived in the short term.

Explicit stability conditions Using Eqs. (8.67), (8.69) or (8.74), we may analyze
the stability of given physical models with respect to gravitational instabilities. For
starters, we may use the equilibrium toy models from Chap.6 for instance, since
they present the huge advantage of being analytical and simple, as well as physically
motivated. We may then construct many interesting models of various cosmological
environments and, increasing the refinement little by little, investigate their implica-
tions on the structuring of the Universe. As mentioned in Chap. 8, one way to derive
local stability criteria such as Suydam’s criterion is to perform Frobenius expansions.
However, in order to be able to draw definite conclusions such as those derived in
Goedbloed and Poedts (2004) for instance, which deal with second order equations,
we need a profound understanding of fourth order differential equations. The higher
the degree of the equation, the larger the number of independent solutions, so that one
cannot simply transpose the aformentioned works to the present case. Fortunately,
many of the necessary tools are detailed in Bender and Orszag (1978) for example.
Another very promising path to follow is to pursue the matrix formulation that I
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exposed in Sect. 8.3. There surely is a lot that could be understood from the analysis
of the eigenvalues of A0 for example.

In any case, a necessary discussion, that I have kept to a minimum in this man-
uscript, is that of boundary conditions, which we know may completely change
stability properties. To model the cosmic web and protogalaxies, a countless number
of boundary conditions may be relevant given the high diversity of these environ-
ments. In Chap.6, I have shown how to compute the thickness of self-gravitating
polytropes, and in our stability analysis here we have essentially considered the rigid
walls boundary conditions. Accounting for the vast variety of environments present
in the cosmic web, and getting representative examples, requires a thorough, dedi-
cated study. A very good starting point is to make choices inspired from other fields,
e.g. from the theoretical models of interstellar clouds and those from stellar physics
(e.g. Goldreich and Lynden-Bell 1965; Cox 1980). Reference Goedbloed and Poedts
(2004) also present interesting astrophysically relevant boundary conditions (cf. their
models IV-VI of closed or open coronal magnetic loops, and stellar wind outflows).

Expliciting singular modes In this manuscript, we have discussed and explicited
discrete and continuous spectra, i.e. eigenfrequencies, but the modes that we have
explicited corresponded only to the discrete parts, the eigenmodes. What are the
modes corresponding to the continuous spectrum? Here is a very brief overview
of some historical key moments of research on this topic. In 1946, L. Landau per-
formed a proper treatment of the linearized Vlasov–Poisson equations by means of
the Laplace transform of the initial value problem, i.e. of plasma oscillations in a
kinetic description (Landau 1946). He showed that singularities give rise to damping
of the plasma oscillations, a phenomenon now called Landau damping. Later, N. van
Kampen proved that the same result can be obtained with a normal mode analysis,
but using Dirac δ-functions (Van Kampen 1955), showing that these equations have a
continuous spectrum of singular normal modes, now known as Van Kampen modes,
and referred to as ‘improper’ eigenmodes because they are distributions rather than
regular functions. Because these analyses were performed in the kinetic description,
this damping was thought to be restricted to the microscopic picture. However, the
study of a fluid model, namely the electrostatic oscillations in inhomogeneous cold
plasmas, by Barston in 1964 by means of singular normal modes à la Van Kam-
pen and later by Sedláček in 1971 with a Laplace transform à la Landau (Barston
1964; Sedláček 1971), showed that a macroscopic description may also lead to dis-
sipationless damping, which is due to inhomogeneity in ordinary space while in the
Landau damping case it is due to inhomogeneity in the velocity space. The point is
that damping of initial perturbations occurs in conservative systems with a continu-
ous spectrum through redistribution over the different continuum modes. For more
information, see Chaps. 10 and 11 of Goedbloed and Poedts (2004), or for example
Balbinski (1984) in which the author exhibits the ‘eigenfunctions’ of the continuum
for a differentially rotating perfect fluid, and argues that indeed they represent a phys-
ical perturbation despite their singular form. In light of these studies, an important
step following the work in this manuscript will be to derive explicitly the singular
modes relevant in cosmological situations.
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So far our stability analysis focused on walls and filaments at rest, without mag-
netic field and considering essentially one fluid only. Letme nowbriefly underline the
ingredients that I think are the most important to add, little by little, in the description
to bring it closer to realistic astrophysical and cosmological environments, and give
elements as to how to proceed.

Expansion In the cosmological context, a major element to consider is the expansion
of the Universe. Its impact on the fragmentation of filaments will surely be of great
importance, but it may be quantitatively and qualitatively different at various epochs.
For instance, we may expect the expansion to play an important role in all three
principal directions of early filaments, since they are not strongly bound yet, while
in a later filament one or two directionsmay have detached from the global expansion
(the ‘turn around’). Also, in the StandardModel of Cosmology, expansion is radically
different in the matter dominated era and in the dark energy dominated era, so early
and late filaments also evolve in different global frameworks. It will be very fruitful to
compare the results obtained with this spectral theory approach with works tackling
gravitational instabilitywith expansion such as Lacey (1989) for instancewho locally
analyses the evolution of perturbations in a collapsing, nearly pressure-free spherical
or planar background.

Dark matter The second unescapable element to consider for modeling cosmologi-
cal structure formation is darkmatter, which is dominant at those scales. As discussed
inChap.1, cosmological numerical simulations show that the darkmatter cosmicweb
has a lot of substructure, and also that baryons in filaments are clumpy too, inducing
an intermittent accretion onto the nodes (galaxies and clusters) of the web. To what
extent is the clumpiness of the gas inside filaments due to the clumpiness of the under-
lying darkmatter? To answer this question, wemay develop two approaches. First the
structured dark matter background may be treated as a fixed external potential which
breaks the assumed axisymmetry of the baryonic fluid equilibrium. We may then
evaluate how this affects the fragmentation of baryons compared to the case, which I
have detailed in this manuscript, of the fragmentation of baryons in an axisymmetric
external potential. Another approach consists in treating the dark matter background
as a second fluid. However, while a fluid description is relevant for baryons, the
dark matter component has a subtler dynamics, because of its collisionless nature,
and in principle requires a kinetic description. This requires identifying physically
motivated effective closure relations to legitimate an effective fluid description of
the dark component too. Various approaches to do so can be found in the literature,
with discussions on their respective validity. Such a bi-fluid approach will then help
uncover the dynamical channels through which baryons and dark matter affect each
other’s behaviours in cosmological filaments.

Magnetic field In many astrophysical environments, magnetic fields clearly play
a major role, and they may also be important in the formation of protogalaxies.
Fortunately, given that the approach adopted in this manuscript is inspired from
plasma physics, it is natural and relatively straightforward to include magnetic fields
in the description. Also, as mentioned in Sect. 8.2.2, one of the outcomes of research
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in MHD is that, paradoxically at first sight, studying the MHD case turns out to be
simpler than exploring the HD case. Indeed, this more general case lifts degeneracies
and thus alleviates possible confusions and misunderstandings. In that spirit, I am
convinced that adding magnetic fields to the above study on gravitational instability
will also help understand better the latter.

Flows While adding magnetic fields in the description is probably not absolutely
necessary in the cosmological context (because of their weak strengths at those
scales) but is certainly crucial to describe astrophysical situations, an element that
we have discarded in this manuscript, and that is of the utmost importance for both
Cosmology and Astrophysics, is flows.

Physically, we may distinguish two broad classes of cosmological filaments
because the environments in which filamentary structures evolve in the early Uni-
verse and late Universe are in many aspects radically different. For example, late
times filaments are well defined, with rather sharp profiles and clearly delimited by
the nodes that they interconnect, which is not the case in the early stages. Indeed,
as discussed in Chap.1, dark matter decouples much earlier than baryons so that,
at Recombination, baryons are rather homogeneously distributed but evolve in an
already formed web-like gravitational landscape due to the dark matter field which
started structuring itself much earlier (at matter-radiation equality, essentially). Con-
sequently, accretion on filaments is very different in the Universe early on vs at late
times. Late filaments may be seen as the intersection of several walls or sheets, along
which matter flows onto the filaments (e.g. Cautun et al. 2014). Late filaments are
thus fed with matter in a much more anisotropic manner than early ones. That may
induce azimuthal flows because the walls that feed them do not intersect edge-on but
have a relative non zero impact parameter. In addition, we expect longitudinal flows
along late filaments due to the gravitational attraction of the clusters they intercon-
nect. Typically, we may expect flows to be essentially azimuthal in the middle of
filaments where the attraction of clusters at both ends roughly balances, while they
would be longitudinal in the vicinity of each cluster. I think that this will be a very
important element to take into account in the modeling of structure formation.

Formally, how does the spectral problem change when including flows? The book
byGoedbloed et al. (2010) is dedicated to this question.Here are briefly the key points
that change with respect to the static case. Firstly, with flow the equilibrium states
are different from those presented in Chap.6. But most interestingly, while station-
ary equilibria require more equations to be satisfied than the simple hydrostatic and
Poisson equations of the static case, more solutions are permitted because there is
then more freedom in the choice of the density, pressure and magnetic field profiles.1

Secondly, the presence of a background flow also radically modifies the behaviour of
perturbations. The most important additional features are that the eigenfrequencies

1It may seem paradoxical that adding a constraint increases the number of solutions. A nice analogy
to convince ourselves that this is indeed not necessarily the case is the following. Instead of one
ball on a hill as in Fig. 7.4, consider two balls on opposite sides of the hill. As such, the balls roll
down the hill, so that this is clearly not a stable equilibrium. However, if the two balls are attached
together by a wire, i.e. we add a constraint, then an infinite number of stable solutions now exist.
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are Doppler shifted, the Kelvin-Helmoltz instability may now arise and, in the pres-
ence of geometrical curvature effects, the centrifugal acceleration plays a major role.
The crucial point is that the very simple relation (7.22) between �v1 and �ξ does not hold
anymore, and now involves the background flow velocity. This is intuitively clear
since the perturbed flow differs from the unperturbed one, as illustrated in Fig. 7.3.
The consequence of this is that the general vector eigenvalue problem (7.28), at the
heart of the present study, now has the following form, first derived by Frieman and
Rotenberg (1960):

�G(ξ̂ ) − 2ωU ξ̂ + ω2ρ0ξ̂ = �0 (10.1)

where the generalized force operator is such that

�G(ξ̂ ) ≡ �F(ξ̂ ) + �∇ · (ξ̂ρ0�v0 · �∇�v0 − ρ0�v0�v0 · �∇ ξ̂ ) (10.2)

where �F is the force operator of the static case, and theDoppler-Coriolis shift operator
is

U ≡ −iρ0�v0 · �∇ . (10.3)

As expected, we recover the static spectral Eq. (7.28) in the absence of background
flow (�v0 = �0). As we have seen in this manuscript, taking gravity fully into account
greatly complexifies the analysis, but what keeps things relatively simple still is that
the force operator is self-adjoint, and thus the eigenvalues are real. The important
point is that here ρ−1

0
�G and ρ−1

0 U are also self-adjoint (for appropriate choices of
boundary conditions), but the eigenvalue problem does not only involve ω2 linearly
as in the static case, but it now involves ω non-linearly. This is what makes the
eigenvalues ω complex. The spectrum is thus not restricted to the simple real axis
anymore, but spans regions in the (�(ω),�(ω)) plane. However, it turns out that
the eigenvalues cannot be in arbitrary places in the complex plane, but lie on well
defined particular locations, called paths. The continuous spectra belong to the paths,
and monotonicity theorems for the discrete spectrum, generalizing the Goedbloed-
Sakanaka theorem presented in Chap.7, are proven to exist along those paths. Thanks
to these studies, we now have a deep understanding of the MHD spectral problem
including stationary flows as in the static case detailed in Chap.7. Note however
that this is still an active field of research among plasma physicists themselves. For
example the authors in Goedbloed et al. (2010) point out that ‘Surprisingly [...] this
more general theory [including background flow] remains underdeveloped’, and they
fight against the current and common misconception that if the spectrum is complex
it is because the operator governing the spectral problem is not self-adjoint, while
in fact, as I just mentioned, the operators are still self-adjoint, but the key is that
the eigenproblem in ω is quadratic.2 Also, finally, most of the literature treats ‘only’
stationary flows. A more general theory is yet to come.

These studies were performed in the Cowling approximation. An important step
forward will be now to generalize these very powerful tools to study gravitational

2See also details and discussion in Goedbloed (2011).
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instability including flows to assess the possibility of clumps forming along the
cosmic web. It will be very interesting and important to then compare these with
works dealingwith similar problems such asWelter (1982) for instancewhoexamines
gravitational instabilities in shock-compressed gas layers.

Turbulence, dissipation, thermal instability, etc Modeling structure formation is
an almost endless, fascinating game, but energetic considerations are too essential
to be left aside. For example, another important feature that should be discussed in
terms of epochs is the gas temperature and metallicity. It is crucial as it governs the
existing radiative cooling channels so that cooling efficiency varies a lot with redshift.
Hence, fragmentation by thermal instability, which we know is crucial in interstellar
environments,will greatly vary in relevance, efficiency and size of subsequent clumps
from one cosmological epoch to another (e.g. pre-reionization vs post-reionization).
I think that delving into these energy considerations is important, but probably at
a second stage, once the ingredients evoked above are already taken into account
properly. As a hint on how to take into account dissipative effects, we may turn
once again to the book of Goedbloed et al. (2010) which shows how to incorporate
resistivity in the spectral analysis.

More references Two authors, other than Goedbloed and Poedts (2004) and Goed-
bloed et al. (2010), that really tackle the question of theMathematics of the spectrum
of adiabatic oscillations are M. Takata and H. R. Beyer (we mentioned the latter
in Sect. 7.2.3). For instance, Takata (2012) explores the spectrum with an approach
adapted from geoseismology using wedge products. However these authors focus on
stars, i.e. spherically symmetric objects, thus working with spherical harmonics, and
do not discuss gravitational instability with their viewpoints.

More analogies On physical grounds, analogies between the IGM and the ISM are
paramount because the physics of these environments is fundamentally the same.
From the formal point of view, it is now clear that the parallel between linearized
idealMHDandQuantumMechanics, both dealingwith finding the spectrumof linear
self-adjoint operators in Hilbert spaces, is extremely fruitful (Goedbloed and Poedts
2004). For the question of gravitational fragmentation, I would add three analogies
that I think should beworth exploring: (i) Electrostatics:The formal analogy between
electrostatics and gravity is well known. The only fundamental difference between
them is that pure dipole or quadrupole gravitational potentials cannot arise as in the
electrostatic case since there is no gravitational analogue of negative charge (e.g.
Binney and Tremaine 2008). However, as far as perturbations are concerned, the
density field entering the Poisson equation is ρ1 which can be negative in contrast to
the density ρ0. Therefore, this analogy may be extremely fruitful to build up intuition
on how perturbations evolve, and also to use all the formal tools developed in this
field, or even maybe to build up an experimental set up where gravity is modeled by
electric fields. There is no screening effect for gravitation sincemass is positvie,while
having two oppositely charged species in plasmas gives rise to the concept of Debye
length, so could it be relevant and useful to define a gravitational Debye length in
the evolution of perturbations? (ii) Peridynamics: As briefly mentioned in Sect. 7.3,
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a field from which I believe a lot can be learnt is the peridynamics theory, which has
its roots in studies of elasticity. Indeed, it deals with integral equations and non local
wave equations, so that a lot of formal tools relevant for wave equations like (7.58)
governing �ξ or (9.14) governing ρ1 could be transferred. (iii) Quantum to Classical
transition: The fundamental constant � ‘monitors the power’ of quantum effects in
quantum theory, in the sense that one recovers classical mechanics when taking the
formal limit � → 0 of quantum mechanics, i.e. the Hamilton-Jacobi equation from
the Schrödinger equation. Now since in the force operator (7.57) the parameter 4πG
is in factor of the gravitational terms, it may be enlightening, or at least interesting, to
look at pressure waves as the ‘classical’ limit of the full regime, the combination of
the Cowling and Jeans terms giving rise to the ‘quantum’ regime, in which the effects
due to the fundamental constant 4πG become important. Beyond a mere curiosity,
this idea can be interesting in practice, by looking for solutions of the propagation
of acoustic waves in the WKB form3 using 4πG as � when studying the quantum to
classical transition.

So far I have presented ideas of extensions to the work presented in part II only.
For the question of the origin of cosmological magnetic fields of part I, I foresee the
following.

Evolution of Cosmological Magnetic Fields As we have seen in Chap.3, most
magnetogenesismodels operate very early in theHistory of theUniverse. But in order
to compare predictions with observations we need to model properly the evolution of
those fields once generated, beyond a simple dilution B ∝ a−2 due to the expansion
as presented in Chap.2. As we have seen in Chap.2, cosmological magnetic fields
are frozen-in in the cosmological plasma. This is actually the basic reason why it
is difficult to generate a large scale magnetic field, but it also has two interesting
consequences in our problem: firstly, once a magnetic field is created we know
that it will not disappear by diffusion, and secondly, since the magnetic fields will
be following the fate of matter, the study of the evolution of magnetic fields can be
reduced in great part to the study of the evolution of matter throughout the large scale
structure formation. Having said that, the evolution of matter is already complex,
therefore computing the evolution of cosmic magnetic fields will not be an easy
task, but at least we have a solid track to follow. Concretely speaking, the induction
Eq. (2.16) governs the evolution of magnetic fields in a given velocity field �v. Taking
the latter to be the cosmological velocity field, this gives us the means to link the
statistical properties of cosmological magnetic fields to those of the flows at the
largest scales given by the Standard Model of Cosmology. Also, it may be necessary
to decompose this work in epochs, scales and geometries, similarly to what we have
done in the present manuscript, and treat the linear and non-linear regimes separately.

What is certain is that there is still a lot of rich science to be explored at this
level. In fact, it might be necessary to refine the description of the IGM. Indeed,
because of its low collisionality, the MHD model may not be the most appropri-

3I heremean the genuineWKB approach for finding approximate solutions to a differential equation
for which the highest order term contains a small parameter, not the WKB-type dispersion relations
discuted in the previous chapter.
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ate (e.g. Falceta-Gonçalves and Kowal 2015). Alternatives to this description exist.
For example Freidberg (2014) presents two of them (in the context of tokamaks):
kinetic MHD, which is the most reliable and physically motivated description but it
is particularly difficult to manipulate, and the double adiabatic MHD (the so-called
Chew-Goldberger-Lowapproximation,Chewet al. 1956), a collisionless fluid model,
which is much more tractable, but that is unfortunately not physically motivated. In
his book, Freidberg shows that, in a sense, the ideal MHD and the double adiabatic
models are two fluidmodels which bracket the most difficult kineticMHDmodel (cf.
e.g. MHD stability comparison theorems in his Sect. 10.6). This justifies the impor-
tance of studying ideal MHD and double adiabatic MHD, despite their (relative)
simplicity.

All in all, there is still a lot of fascinating physics within reach. On the one
hand, these researches will help us better understand what numerical astrophysicists
and cosmologists call the subgrid physics, and take into account in effective and
realistic ways these complicated effects still unreachable numerically because of the
necessarily limited dynamical ranges. On the other hand, this study is relevant and
essential both for high and low redshift environments. For lower redshifts and large
scales, aside from giving us clues as to how freshmatter is funnelled into galaxies and
galaxy clusters to sustain their star formation activity accross cosmic times, it will
provide valuable hints on how intergalactic gas and magnetic fields are distributed in
the cosmic web in the prospect of future telescopes like Athena (its current science
workinggroup1.4 is dedicated to “themissingbaryons and thewarm-hot intergalactic
medium”) and the SKA (it will be the first telescope capable of directly mapping
the IGM gas in the cosmic web, see e.g. Wilcots 2004, and the origin of cosmic
magnetic fields is one of its main drivers, as stressed by the activities of its “Cosmic
Magnetism” science working group). For higher redshifts and smaller scales, it will
help us understand whether the pristine IGMwas prone to fragmentation, and enable
us to determine the state of matter (size of clumps, their temperature, density, etc.)
as it fell into the forming core of protogalaxies which is crucial to determine their
subsequent evolution. Such information on the local physics of the first stars and first
galaxies will then bring valuable insight to themodeling of the Epoch of Reionization
itself.
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